首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

One of the most important and often neglected physiological stimuli contributing to the differentiation of vascular endothelial cells (ECs) into a blood-brain barrier (BBB) phenotype is shear stress (SS). With the use of a well established humanized dynamic in vitro BBB model and cDNA microarrays, we have profiled the effect of SS in the induction/suppression of ECs genes and related functions.  相似文献   

2.

Background  

Oxidative stress (OS) is an important factor in brain aging and neurodegenerative diseases. Certain neurons in different brain regions exhibit selective vulnerability to OS. Currently little is known about the underlying mechanisms of this selective neuronal vulnerability. The purpose of this study was to identify endogenous factors that predispose vulnerable neurons to OS by employing genomic and biochemical approaches.  相似文献   

3.

Background  

Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions.  相似文献   

4.

Background

Neurological disorders suggest that the excitotoxicity involves a drastic increase in intracellular Ca2+ concentrations and the formation of reactive oxygen species. The presence of these free radicals may also affect the dopaminergic system. The aim of this work was to determine if riboflavin (B2) and pyridoxine (B6) provide protection to the brain against free radicals generated by 3-nitropropionic acid (3-NPA) by measuring the levels of dopamine (DA) and selected oxidative stress markers.

Methods

Male Fisher rats were grouped (n?=?6) and treated as follows: group 1, control (NaCl 0.9%); group 2, 3-NPA (20 mg/kg); group 3, B2 (10 mg/kg); group 4, B2 (10 mg/kg)?+?3-NPA (20 mg/kg); group 5, B6 (10 mg/kg) and group 6, B6?+?3-NPA. All treatments were administered every 24 h for 5 days by intraperitoneal route. After sacrifice, the brain was obtained to measure DA, GSH, and lipid peroxidation, Ca2+, Mg2+, ATPase and H2O2.

Main findings

Levels of dopamine increased in cortex, striatum and cerebellum/medulla oblongata of animals that received 3-NPA alone. The lipid peroxidation increased in cortex, striatum, and cerebellum/medulla oblongata, of animals treated with B2 vitamin alone. ATPase dependent on Ca+2, Mg+2 and H2O2 increased in all regions of animals that received 3-NPA alone.

Conclusion

The results confirm the capacity of 3-NPA to generate oxidative stress. Besides, the study suggests that B2 or B6 vitamins restored the levels of DA and reduced oxidative stress in brain of rats. We believe that these results would help in the study of neurodegenerative diseases.
  相似文献   

5.

Background

The mitogen-activated protein kinases (MAPKs) have been shown to participate in a wide array of cellular functions. A role for some MAPKs (e.g., extracellular signal-regulated kinase, Erk1/2) has been documented in response to certain physiological stimuli, such as ischemia, visceral pain and electroconvulsive shock. We recently demonstrated that restraint stress activates the Erk MAPK pathway, but not c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK) or p38MAPK, in several rat brain regions. In the present study, we investigated the effects of a different stressor, acute forced swim stress, on the phosphorylation (P) state of these MAPKs in the hippocampus, neocortex, prefrontal cortex, amygdala and striatum. In addition, effects on the phosphorylation state of the upstream activators of the MAPKs, their respective MAPK kinases (MAPKKs; P-MEK1/2, P-MKK4 and P-MKK3/6), were determined. Finally, because the Erk pathway can activate c-AMP response element (CRE) binding (CREB) protein, and swim stress has recently been reported to enhance CREB phosphorylation, changes in P-CREB were also examined.

Results

A single 15 min session of forced swimming increased P-Erk2 levels 2–3-fold in the neocortex, prefrontal cortex and striatum, but not in the hippocampus or amygdala. P-JNK levels (P-JNK1 and/or P-JNK2/3) were increased in all brain regions about 2–5-fold, whereas P-p38MAPK levels remained essentially unchanged. Surprisingly, levels of the phosphorylated MAPKKs, P-MEK1/2 and P-MKK4 (activators of the Erk and JNK pathways, respectively) were increased in all five brain regions, and much more dramatically (P-MEK1/2, 4.5 to > 100-fold; P-MKK4, 12 to ~300-fold). Consistent with the lack of forced swim on phosphorylation of p38MAPK, there appeared to be no change in levels of its activator, P-MKK3/6. P-CREB was increased in all but cortical (prefrontal, neocortex) areas.

Conclusions

Swim stress specifically and markedly enhanced the phosphorylation of the MAPKKs P-MEK1/2 and P-MKK4 in all brain regions tested without apparent alteration in the phosphorylation of P-MKK3/6. Curiously, phosphorylation of their cognate substrates (Erk and JNK) was increased to a much more modest extent, and in some brain regions was not altered. Similarly, there was a region-specific discrepancy between Erk and CREB phosphorylation. Possible explanations for these findings and comparison with the effects of restraint stress will be discussed.
  相似文献   

6.

Background  

Neuronal mechanisms underlying affective disorders such as major depression (MD) are still poorly understood. By selectively breeding mice for high (HR), intermediate (IR), or low (LR) reactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis, we recently established a new genetic animal model of extremes in stress reactivity (SR). Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS) and non-REM sleep (NREMS) as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG) parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG) electrodes. After recovery, EEG and EMG recordings were performed for two days.  相似文献   

7.

Background  

Studies of adult hippocampal neurogenesis (AHN) in laboratory rodents have raised hopes for therapeutic interventions in neurodegenerative diseases and mood disorders, as AHN can be modulated by physical exercise, stress and environmental changes in these animals. Since it is not known whether cell proliferation and neurogenesis in wild living mice can be experimentally changed, this study investigates the responsiveness of AHN to voluntary running and to environmental change in wild caught long-tailed wood mice (Apodemus sylvaticus).  相似文献   

8.

Background  

The present study was designed to test the hypothesis that chronic very mild prenatal carbon monoxide (CO) exposure (25 parts per million) subverts the normal development of the rat cerebellar cortex. Studies at this chronic low CO exposure over the earliest periods of mammalian development have not been performed to date. Pregnant rats were exposed chronically to CO from gestational day E5 to E20. In the postnatal period, rat pups were grouped as follows: Group A: prenatal exposure to CO only; group B: prenatal exposure to CO then exposed to CO from postnatal day 5 (P5) to P20; group C: postnatal exposure only, from P5 to P20, and group D, controls (air without CO). At P20, immunocytochemical analyses of oxidative stress markers, and structural and functional proteins were assessed in the cerebellar cortex of the four groups. Quantitative real time PCR assays were performed for inducible (iNOS), neuronal (nNOS), and endothelial (eNOS) nitric oxide synthases.  相似文献   

9.

Background  

Oxidative stress has shown to contribute in the mechanisms underlying apoptotic cell death occuring in AIDS-dementia complex. Here we investigated the role of peroxynitrite in apoptosis occurring in astroglial cells incubated with supernatants of HIV-infected human primary macrophages (M/M).  相似文献   

10.

Background  

glutathione (GSH) is the most abundant thiol antioxidant in mammalian cells. It directly reacts with reactive oxygen species (ROS), functions as a cofactor of antioxidant enzymes, and maintains thiol redox potential in cells. GSH depletion has been implicated in the pathogenesis of neurological diseases, particularly to Parkinson's disease (PD). The purpose of this study was to investigate the change of cellular antioxidant status and basic cell functions in the relatively early stages of GSH depletion.  相似文献   

11.

Background  

Chronic food restriction augments the rewarding effect of centrally administered psychostimulant drugs and this effect may involve a previously documented upregulation of D-1 dopamine receptor-mediated MAP kinase signaling in nucleus accumbens (NAc) and caudate-putamen (CPu). Psychostimulants are known to induce striatal glutamate release, and group I metabotropic glutamate receptors (mGluR) have been implicated in the cellular and behavioral responses to amphetamine. The purpose of the present study was to evaluate whether chronic food restriction increases striatal MAP kinase signaling in response to the group I mGluR agonist, DHPG.  相似文献   

12.

Background  

The ability to respond to changes in the extra-intracellular environment is prerequisite for cell survival. Cellular responses to the environment include elevating defense systems, such as the antioxidant defense system. Hypoxia-evoked reactive oxygen species (ROS)-driven oxidative stress is an underlying mechanism of retinal ganglion cell (RGC) death that leads to blinding disorders. The protein peroxiredoxin 6 (PRDX6) plays a pleiotropic role in negatively regulating death signaling in response to stressors, and thereby stabilizes cellular homeostasis.  相似文献   

13.
Aluminum (Al) is one of the environmental stressors that induces formation of reactive oxygen species (ROS) in plants. Hydrogen peroxide (H2O2) and H2O2-generated apoplast diamine oxidase (DAO) activity were detected cytochemically via transmission electron microscopy (TEM), in pea (Pisum sativum L.) root nodules exposed to high (50 μM AlCl3, for 2 and 24 h) Al stress.The nodules were shown to respond to Al stress by disturbances in infection thread (IT) growth, bacteria endocytosis, premature degeneration of bacteroidal tissue and generation of H2O2 in nodule apoplast. Large amounts of peroxide were found at the same sites as high DAO activity under Al stress, suggesting that DAO is a major source of Al-induced peroxide accumulation in the nodules. Peroxide distribution and DAO activity in the nodules of both control plants and Al-treated ones were typically found in the plant cell walls, intercellular spaces and infection threads. However, 2 h Al treatment increased DAO activity and peroxide accumulation in the nodule apoplast and bacteria within threads. A prolonged Al treatment (24 h) increased the H2O2 content and DAO activity in the nodule apoplast, especially in the thread walls, matrix and bacteria within infection threads. In addition to ITs, prematurely degenerated bacteroids, which occurred in response to Al, were associated with intense staining for H2O2 and DAO activity.These results suggest the involvement of DAO in the production of a large amount of H2O2 in the nodule apoplast under Al stress. The role of reactive oxygen species in pea-Rhizobium symbiosis under Al stress is discussed.  相似文献   

14.

Background

Epidemiological surveys and studies with animal models have established a relationship between maternal stress and affective disorders in their offspring. However, whether maternal depression before pregnancy influences behaviour and related neurobiological mechanisms in the offspring has not been studied.

Results

A social defeat stress (SDS) maternal rat model was established using the resident-intruder paradigm with female specific pathogen-free Wistar rats and evaluated with behavioural tests. SDS maternal rats showed a significant reduction in sucrose preference and locomotor and exploratory activities after 4 weeks of stress. In the third week of the experiment, a reduction in body weight gain was observed in SDS animals. Sucrose preference, open field, the elevated-plus maze, light–dark box, object recognition, the Morris water maze, and forced swimming tests were performed using the 2-month-old male offspring of the female SDS rats. Offspring subjected to pre-gestational SDS displayed enhanced anxiety-like behaviours, reduced exploratory behaviours, reduced sucrose preference, and atypical despair behaviours. With regard to cognition, the offspring showed significant impairments in the retention phase of the object recognition test, but no effect was observed in the acquisition phase. These animals also showed impairments in recognition memory, as the discrimination index in the Morris water maze test in this group was significantly lower for both 1 h and 24 h memory retention compared to controls. Corticosterone, adrenocorticotropic hormone, and monoamine neurotransmitters levels were determined using enzyme immunoassays or radioimmunoassays in plasma, hypothalamus, left hippocampus, and left prefrontal cortex samples from the offspring of the SDS rats. These markers of hypothalamic–pituitary–adrenal axis responsiveness and the monoaminergic system were significantly altered in pre-gestationally stressed offspring. Brain-derived neurotrophic factor (BDNF), cyclic adenosine monophosphate response element binding protein (CREB), phosphorylated CREB (pCREB), and serotonin transporter (SERT) protein levels were evaluated using western blotting with right hippocampus and right prefrontal cortex samples. Expression levels of BDNF, pCREB, and SERT in the offspring were also altered in the hippocampus and in the prefrontal cortex; however, there was no effect on CREB.

Conclusion

We conclude that SDS before pregnancy might induce depressive-like behaviours, cognitive deficits, and neurobiological alterations in the offspring.
  相似文献   

15.

Background  

Adrenal chromaffin cells mediate acute responses to stress through the release of epinephrine. Chromaffin cell function is regulated by several receptors, present both in adrenergic (AD) and noradrenergic (NA) cells. Extracellular ATP exerts excitatory and inhibitory actions on chromaffin cells via ionotropic (P2X) and metabotropic (P2Y) receptors. We have taken advantage of the actions of the purinergic agonists ATP and UTP on cytosolic free Ca2+ concentration ([Ca2+]i) to determine whether P2X and P2Y receptors might be asymmetrically distributed among AD and NA chromaffin cells.  相似文献   

16.

Background  

Oxidative stress has been proposed to be involved in the pathogenesis of Parkinson's disease (PD). A plausible source of oxidative stress in nigral dopaminergic neurons is the redox reactions that specifically involve dopamine and produce various toxic molecules, i.e., free radicals and quinone species. α-Synuclein, a protein found in Lewy bodies characteristic of PD, is also thought to be involved in the pathogenesis of PD and point mutations and multiplications in the gene coding for α-synuclein have been found in familial forms of PD.  相似文献   

17.

Background  

Parkinson's disease, for which currently there is no cure, develops as a result of progressive loss of dopamine neurons in the brain; thus, identification of any potential therapeutic intervention for disease management is of a great importance.  相似文献   

18.

Background  

The cause of sporadic amyotrophic lateral sclerosis (ALS) is largely unknown but hypotheses about disease mechanisms include oxidative stress, defective axonal transport, mitochondrial dysfunction and disrupted RNA processing. Whereas familial ALS is well represented by transgenic mutant SOD1 mouse models, the mouse mutant wobbler (WR) develops progressive motor neuron degeneration due to a point mutation in the Vps54 gene, and provides an animal model for sporadic ALS. VPS54 protein as a component of a protein complex is involved in vesicular Golgi trafficking; impaired vesicle trafficking might also be mechanistic in the pathogenesis of human ALS.  相似文献   

19.

Background  

Calcium (Ca2+) has recently been shown to selectively increase the activity of monoamine oxidase-A (MAO-A), a mitochondria-bound enzyme that generates peroxyradicals as a natural by-product of the deamination of neurotransmitters such as serotonin. It has also been suggested that increased intracellular free Ca2+ levels as well as MAO-A may be contributing to the oxidative stress associated with Alzheimer disease (AD).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号