首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Tetracyanoethylene oxide (TCNEO) reacted with [CpCo(dithiolene)] (Cp = η5-cyclopentadienyl) complexes having 4-pyridyl or 3-pyridyl group to undergo a dicyanomethylation to the nitrogen atom on the pyridyl group. The reaction of [CpCo(S2C2(4Py)2)] (1) with TCNEO formed both the monodicyanomethylated [CpCo(S2C2(4Py)(4Py-C(CN)2))] (1a) and bisdicyanomethylated [CpCo(S2C2(4Py-C(CN)2)2)] (1b). [CpCo(S2C2(2Py)(4Py))] (2) reacted with TCNEO to give [CpCo(S2C2(2Py)(4Py-C(CN)2))] (2a) but no dicyanomethylation occurred on the 2-pyridyl group. 2 reacted with excess TCNEO to form the only dicyanomethylated acetylene derivative 2Py-CC-(4Py-C(CN)2) (2c), followed by a dissociation of the CpCoS2 fragment. The monodicyanomethylated [CpCo(S2C2(nPy-C(CN)2)(2-thienyl))] (n = 4 (4a) or 3 (5a)) complexes were also prepared from [CpCo(S2C2(nPy)(2-thienyl))] (n = 4 (4) or 3 (5)) and TCNEO. 1b was structurally characterized by X-ray diffraction study. The all dicyanomethylated [CpCo(dithiolene)] complexes showed the dithiolene LMCT absorption in the range of 605-644 nm (ε = 7000-9200 M−1 cm−1) and very strong absorption due to their pyridinium-dicyanomethylide moieties in near-UV region (e.g. 1b: λmax = 470 nm, ε = 43,400 M−1 cm−1). The CV of the all dicyanomethylated complexes exhibited two reduction waves. The first reduction is due to CoIII/CoII and the second one is due to the reduction of the pyridinium-dicyanomethylide moiety. The reduced 1b is stable enough for several minutes according to the visible spectroelectrochemical measurement. The ESR spectrum of 1b indicated eight hyperfine splittings due only to the interaction with the nuclear spin of cobalt (I = 7/2).  相似文献   

2.
Molybdenum dithiopropiolato complexes, [(η5-C5R4R)Mo(CO)22-S2CCCPh)] (R=H, R=Me 1a, R=R=H 1b; R=R=Me 1c) react with trimethylamine-N-oxide (TMNO · 2H2O) under mild thermolysis to form 5-phenyl-1,2-dithiole-3-thione (2). The reaction proceeds through the formation of the oxo-complexes, [(η5-C5R4R)Mo(O)(η3-S2CCCPh)] (R=H, R=Me 3a, R=R=H 3b; R=R=Me 3c). Direct reaction of 3a-c with TMNO · 2H2O under thermolysis also results in formation of 2.  相似文献   

3.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

4.
The 2-imino-1,10-phenanthroline ligands, 1,10-C12H7N2-2-CRN(2,6-i-Pr2-4-R1-C6H2) [R = R1 = H (L1); R = H, R1 = Br (L2); R = H, R1 = CN (L3); R = H, R1 = i-Pr (L4); R = Me, R1 = H (L5); R = Me, R1 = i-Pr (L6)], have been prepared in high yield from the condensation reaction of 1,10-C12H7N2-2-CRO (R = H, Me) with one equivalent of the corresponding 4-substituted 2,6-diisopropylaniline. The molecular structures of L2, L5 and L6 reveal the imino nitrogen atoms to adopt a transoid configuration with respect to the phenanthrolinyl nitrogen atoms. Treatment of Lx with one equivalent of CoCl2 in n-BuOH at 90 °C gives the high spin complexes, (Lx)CoCl2 [Lx = L1 (1a), L2 (1b), L3 (1c), L4 (1d), L5 (1e), L6 (1f)], in which the metal centres exhibit distorted square pyramidal geometries. Activation of 1a-1f with excess methylaluminoxane (MAO) gives catalysts that are modestly active for the oligomerisation of ethylene affording mainly linear α-olefins along with some degree of internal olefins. While the donor capability of the 4-position of the N-aryl group does not appear to affect the activity of the catalyst, it does have an influence on the ratio of α-olefins to internal olefins. Single crystal X-ray diffraction studies have been performed on L2, L5, L6, 1a, 1c and 1f.  相似文献   

5.
A series of new zirconium complexes bearing bis(phenoxyketimine) ligands, bis((3,5-di-tert-butyl-C6H2-2-O)R1CN (2-R2-C6H4))ZrCl2 {R1 = Me, R2 = H (2a); R1 = Et, R2 = H (2b); R1 = Ph, R2 = H (2c); R1 = 2-Me-Ph, R2 = H (2d); R1 = 2-F-Ph, R2 = H (2e); R1 = 2-Cl-Ph, R2 = H (2f); R1 = 2-Br-Ph, R2 = H (2g); R1 = Ph, R2 = Me (2h); R1 = Ph, R2 = F (2i)}, have been prepared, characterized and tested as catalyst precursors for ethylene polymerization. Crystal structure analysis reveals that complex 2c has a six coordinate center in a distorted octahedral geometry with trans-O, cis-N, cis-Cl arrangement which possesses approximate C2 symmetry. When activated with methylaluminoxane (MAO), complexes 2a-2i exhibited high ethylene polymerization activities of 106-108 g PE (mol M h)−1. Compared with the bis(phenoxyimine) zirconium analogues bis((3,5-di-tert-butyl-C6H2-2-O)CHNC6H5)ZrCl2 (3), the introduction of substituent on the carbon atom of the imine double bond enhanced the catalytic activity and molecular weight of prepared polyethylene. Especially, when the H atom at the carbon atom of the imine double bond was replaced by 2-fluoro-phenyl with strong electronic-withdrawing property, complex 2e displayed the highest catalytic activity, and the polyethylene obtained possessed the highest molecular weight and melt point.  相似文献   

6.
Treatment of [Fc-1-R1-1′-R2] (R1 = H, R2 = CH(O); R1 = H, R2 = CMe(O); R1 = R2 = CMe(O)) with LiCCCH2OLi (prepared in situ from HCCCH2OH and n-BuLi) affords the ferrocenyl-substituted but-2-yne-1,4-diol compounds of general formula [Fc-1-R1-1′-{CR(OH)CCCH2OH}] (R1 = R = H (1a); R1 = H, R = Me (1b); R1 = CMe(O), R = Me (1c)) in low to high yields, respectively (where Fc = Fe(η5-C5H4)2). In the case of the reactions of [Fc-1-R1-1′-R2] (R1 = H, R2 = CH(O); R1 = R2 = CMe(O)), the by-products [Fc-1-R1-1′-{CR(OH)(CH2)3CH3}] (R1 = R = H (2a); R1 = CMe(O), R = Me (2c)) along with minor quantities of [Fc-1,1′-{CMe(OH)(CH2)3CH3}2] (3) are also isolated; a hydrazide derivative of dehydrated 2c, [1-(CMeCHCH2CH2CH3)-1′-(CMeNNH-2,4-(NO2)2C6H3)] (2c′), has been crystallographically characterised. Interaction of 1 with Co2(CO)8 smoothly generates the alkyne-bridged complexes [Fc-1-R1-1′-{Co2(CO)6-μ-η2-CR(OH)CCCH2OH}] (R1 = R = H (4a); R1 = H, R = Me(4b); R1 = CMe(O), R = Me (4c)) in good yield. Reaction of 4a with PhSH, in the presence of catalytic quantities of HBF4 · OEt2, gives the mono- [Fc-1-H-1′-{Co2(CO)6-μ-η2-CH(SPh)CCCH2OH}] (5) and bis-substituted [Fc-1-H-1′-{Co2(CO)6-μ-η2-CH(SPh)CCCH2SPh}] (6) straight chain species, while with HS(CH2)nSH (n = 2,3) the eight- and nine-membered dithiomacrocylic complexes [Fc-1-H-1′-{cyclo-Co2(CO)6-μ-η2-CH(S(CH2)n-)CCCH2S-}] [n = 2 (7a), n = 3 (7b)] are afforded. By contrast, during attempted macrocyclic formation using 4b and HSCH2CH2OCH2CH2SH dehydration occurs to give [Fc-1-H-1′-{Co2(CO)6-μ-η2-C(CH2)CCCH2OH}] (8). Single crystal X-ray diffraction studies have been reported on 2c′, 4b, 4c, 7b and 8.  相似文献   

7.
The violet ruthenium complex [(η5-C5Me5)Ru(η5-C3B2Me4R1)] (2a, R1 = Me) reacts with terminal alkynes R2CCH to give yellow 4-borataborepine compounds [(η5-C5Me5)Ru{η7-(MeC)3(R1B)2(R2C2H)}] (4c, R1 = Me, R2 = Ph; 4d, R1 = Me, R2 = SiMe3; 4e, R1 = Me, R2 = H). The insertion of alkynes into the folded C3B2 heterocycle of 2a causes some steric hindrance, which yields with elimination of the distant boranediyl group the corresponding boratabenzene complexes 5 as byproducts. The analogous reactions with internal alkynes R2CCR2 proceed slowly and afford predominantly the boratabenzene complexes [(η5-C5Me5)Ru{η6-(MeC)3(MeB)(R2C)2}] (5f, R2 = Et, 5g, R2 = p-tolyl), respectively. In the latter case, three byproducts are formed: methylboronic acid and 1,2,3,4-tetra-p-tolyl-1,3-butadiene (9) due to hydrolysis of the postulated 2,3,4,5-tetra-p-tolyl-1-methylborole (10) and unexpectedly, the cationic triple-decker complex [{(η5-C5Me5)Ru}2{μ,η7-(MeC)3(MeB)2(CH)2}]Cl (11) having two separated CH groups. The new compounds were characterized by NMR, MS, and single-crystal X-ray studies of 4c, 5f, 9 and 11.  相似文献   

8.
The synthesis and characterization of new symmetrical FeII complexes, [FeLA(NCS)2] (1), and [FeLBx(NCS)2] (24), are reported (LA is the tetradentate Schiff base N,N′-bis(1-pyridin-2-ylethylidene)-2,2-dimethylpropane-1,3-diamine, and LBx stands for the family of tetradentate Schiff bases N,N′-bis[(2-R-1H-imidazol-4-yl)methylene]-2,2-dimethylpropane-1,3-diamine, with: R = H for LB1 in 2, R = Me for LB2 in 3, and R = Ph for LB3 in 4). Single-crystal X-ray structures have been determined for 1 (low-spin state at 293 K), 2 (high-spin (HS) state at 200 K), and 3 (HS state at 180 K). These complexes remain in the same spin-state over the whole temperature range [80–400 K]. The dissymmetrical tetradentate Schiff base ligands LCx, N-[(2-R2-1H-imidazol-4-yl)methylene]-N′-(1-pyridin-2-ylethylidene)-2,2-R1-propane-1,3-diamine (R1 = H, Me; R2 = H, Me, Ph), containing both pyridine and imidazole rings were obtained as their [FeLCx(NCS)2] complexes, 510, through reaction of the isolated aminal type ligands 2-methyl-2-pyridin-2-ylhexahydropyrimidine (R1 = H, 57) or 2,5,5-trimethyl-2-pyridin-2-ylhexahydropyrimidine (R1 = Me, 810) with imidazole-4-carboxaldehyde (R2 = H: 5, 8), 2-methylimidazole-4-carboxaldehyde (R2 = Me: 6, 9), and 2-phenyl-imidazole-4-carboxaldehyde (R2 = Ph: 7, 10) in the presence of iron(II) thiocyanate. Together with the single-crystal X-ray structures of 7 and 9, variable-temperature magnetic susceptibility and Mössbauer studies of 510 showed that it is possible to tune the spin crossover properties in the [FeLCx(NCS)2] series by changing the 2-imidazole and/or C2-propylene susbtituent of LCx.  相似文献   

9.
Six new chiral triorganotin(IV) complexes, {(R3Sn)2[C3H6(COO)2]}n (R = Me: 1; Bu: 2), {(R3Sn)2[C4H8(COO)2]}n (R = Me: 3; Bu: 4), and {(R3Sn)2[C2H4O(COO)2]}n (R = Me: 5; Bu: 6) have been prepared by treatment of (R)-(+)-methylsuccinic acid, (S)-(+)-methylglutaric acid and l-(−)-malic acid, with the corresponding R3SnCl (R = Me, Bu) and sodium ethoxide in methanol. All the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, 119Sn) spectroscopy and TGA. Except for 3, all of the complexes were also characterized by X-ray crystallography. The structural analyses reveal that complexes 1 and 5 have 2D network structures in which (R)-(+)-methylsuccinic acid and l-(−)-malic acid act as tetradentate ligands coordinated to trimethyltin(IV) ions. Complexes 2 and 4 have 3D metal-organic framework structures in which the deprotoned acids serve as tetradentate ligands. Complex 6 adopts a 1D zigzag chain structure and forms a 2D supramolecular framework through intermolecular C-H?O interactions. In addition, the antitumor activities of complexes 1-6 have been studied. We also have measured the specific rotation of the chiral dicarboxylic acids and the organotin derivatives.  相似文献   

10.
Two new coordination polymers of Robson-type macrocycles, [Cu2L1(μ-ClO4)2] (1) and [Cu2L2(μ-ClO4)2] (2) (where H2L1and H2L2 are the [2+2] condensation products of 2,6-diformyl-4-flurophenol with 1,3-diaminopropane and 2-hydroxy-1,3-diaminopropane, respectively), have been synthesized and characterized. The intriguing feature is that intermolecular perchlorato bridges occur between adjacent copper(II) centers. The cyclic voltammograms of the complexes show that each complex undergoes two pseudo-reversible processes with the half wave potentials, −0.361 V and −0.729 V for 1, and −0.372 V and −0.744 V for 2, respectively. Magnetic susceptibility was measured for 1 and 2 over a temperature range of 2–300 K. The optimized magnetic data were J = −359.6 cm−1, j′ = −30 cm−1 and R = 6.8 × 10−8 for 1 and = −411 cm−1, j′ = −26 cm−1 and R = 2.4 × 10−7 for 2, respectively. The data reveal antiferromagnetic couplings between the copper(II) ions of intra- and intermolecular units.  相似文献   

11.
Bis(dichlorosilyl)methanes 1 undergo the two kind reactions of a double hydrosilylation and a dehydrogenative double silylation with alkynes 2 such as acetylene and activated phenyl-substituted acetylenes in the presence of Speier’s catalyst to give 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes 4 as cyclic products, respectively, depending upon the molecular structures of both bis(dichlorosilyl)methanes (1) and alkynes (2). Simple bis(dichlorosilyl)methane (1a) reacted with alkynes [R1-CC-R2: R1 = H, R2 = H (2a), Ph (2b); R1 = R2 = Ph (2c)] at 80 °C to afford 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 as the double hydrosilylation products in fair to good yields (33-84%). Among these reactions, the reaction with 2c gave a trans-4,5-diphenyl-1,1,3,3-tetrachloro-1,3-disilacyclopentane 3ac in the highest yield (84%). When a variety of bis(dichlorosilyl)(silyl)methanes [(MenCl3 − nSi)CH(SiHCl2)2: n = 0 (1b), 1 (1c), 2 (1d), 3 (1e)] were applied in the reaction with alkyne (2c) under the same reaction conditions. The double hydrosilylation products, 2-silyl-1,1,3,3-tetrachloro-1,3-disilacyclopentanes (3), were obtained in fair to excellent yields (38-98%). The yields of compound 3 deceased as follows: n = 1 > 2 > 3 > 0. The reaction of alkynes (2a-c) with 1c under the same conditions gave one of two type products of 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes (4): simple alkyne 2a and terminal 2b gave the latter products 4ca and 4cb in 91% and 57% yields, respectively, while internal alkyne 2c afforded the former cyclic products 3cc with trans form between two phenyl groups at the 3- and 4-carbon atoms in 98% yield, respectively. Among platinum compounds such as Speier’s catalyst, PtCl2(PEt3)2, Pt(PPh3)2(C2H4), Pt(PPh3)4, Pt[ViMeSiO]4, and Pt/C, Speier’s catalyst was the best catalyst for such silylation reactions.  相似文献   

12.
A series of organotin(IV) complexes with O,O-diethyl phosphoric acid (L1H) and O,O-diisopropyl phosphoric acid (L2H) of the types: [R3Sn · L]n (L = L1, R = Ph 1, R = PhCH22, R = Me 3, R = Bu 4; L = L2, R = Ph 9, R = PhCH210, R = Me 11, R = Bu 12), [R2Cl Sn · L]n (L = L1, R = Me 5, R = Ph 6, R = PhCH27, R = Bu 8; L = L2, R = Me 13, R = Ph 14, R = PhCH215, R = Bu 16), have been synthesized. All complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 31P and 119Sn) spectroscopy analysis. Among them, complexes 1, 2, 3, 5, 8, 9 and 11 have been characterized by X-ray crystallography diffraction analysis. In the crystalline state, the complexes adopt infinite 1D infinite chain structures which are generated by the bidentate bridging phosphonate ligands and the five-coordinated tin centers.  相似文献   

13.
Reactions of bis(pyridin-2-yl)ketone with tin tetrahalides, SnX4 (X = Cl or Br), or organotin trichlorides, RSnCl3 (R = Ph, Bu or CH2CH2CO2Me), in ROH (R = Me or Et) readily produces RObis(pyridin-2-yl)methanolato)tin complexes, [5: RO(py)2C(OSnX3)] (5: R,X = Me,Cl; Et,Cl; Et,Br) or [6: MeO(py)2C(OSnCl2R)] (R = Ph, Bu, CH2CH2CO2Me). In addition, halide exchange reaction between SnI4 and (5: R,X = Me,Cl) occurred to give (5: R,X = Me,I). The crystal structures of six tin(IV) derivatives indicated, in all cases, a monoanionic tridentate ligand, [RO(py)2C(O)-N,O,N], arranged in a fac manner about a distorted octahedral tin atom. The Sn–O and Sn–N bonds lengths do not show much variation amongst the six complexes despite the differences in the other ligands at tin.  相似文献   

14.
The diiron complexes [Fe(Cp)(CO){μ-η22-C[N(Me)(R)]NC(C6H3R′)CCH(Tol)}Fe(Cp)(CO)] (R = Xyl, R′ = H, 3a; R = Xyl, R′ = Br, 3b; R = Xyl, R′ = OMe, 3c; R = Xyl, R′ = CO2Me, 3d; R = Xyl, R′ = CF3, 3e; R = Me, R′ = H, 3f; R = Me, R′ = CF3, 3g) are obtained in good yields from the reaction of [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(p-NCC6H4R′)(Cp)2]+ (R = Xyl, R′ = H, 2a; R = Xyl, R′ = Br, 2b; R = Xyl, R′ = OMe, 2c; R = Xyl, R′ = CO2Me, 2d; R = Xyl, R′ = CF3, 2e; R = Me, R′ = H, 2f; R = Me, R′ = CF3, 2g) with TolCCLi. The formation of 3 involves addition of the acetylide at the coordinated nitrile and C-N coupling with the bridging aminocarbyne together with orthometallation of the p-substituted aromatic ring and breaking of the Fe-Fe bond. Complexes 3a-e which contain the N(Me)(Xyl) group exist in solution as mixtures of the E-trans and Z-trans isomers, whereas the compounds 3f,g, which posses an exocyclic NMe2 group, exist only in the Z-cis form. The crystal structures of Z-trans-3b, E-trans-3c, Z-trans-3e and Z-cis-3g have been determined by X-ray diffraction experiments.  相似文献   

15.
A study of the reactivity of enantiopure ferrocenylimine (SC)-[FcCHN-CH(Me)(Ph)] {Fc =  (η5-C5H5)Fe{(η5-C5H4)-} (1a) with palladium(II)-allyl complexes [Pd(η3-1R1,3R2-C3H3)(μ-Cl)]2 {R1 = H and R2 = H (2), Ph (3) or R1 = R2 = Ph (4)} is reported. Treatment of 1a with 2 or 3 {in a molar ratio Pd(II):1a = 1} in CH2Cl2 at 298 K produced [Pd(η3-3R2-C3H4){FcCHN-CH(Me)(Ph)}Cl] {R2 = H (5a) or Ph (6a)}. When the reaction was carried out under identical experimental conditions using complex 4 as starting material no evidence for the formation of [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(Ph)}Cl] (7a) was found. Additional studies on the reactivity of (SC)-[FcCHN-CH(R3)(CH2OH)] {R3 = Me (1b) or CHMe2 (1c)} with complex 4 showed the importance of the bulk of the substituents on the palladium(II) allyl-complex (2-4) or on the ferrocenylimines (1) in this type of reaction. The crystal structure of 5a showed that: (a) the ferrocenylimine adopts an anti-(E) conformation and behaves as an N-donor ligand, (b) the chloride is in acis-arrangement to the nitrogen and (c) the allyl group binds to the palladium(II) in a η3-fashion. Solution NMR studies of 5a and 6a and [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(CH2OH)}Cl] (7b) revealed the coexistence of several isomers in solution. The stoichiometric reaction between 6a and sodium diethyl 2-methylmalonate reveals that the formation of the achiral linear trans-(E) isomer of Ph-CHCH-CH2Nu (8) was preferred over the branched derivative (9). A comparative study of the potential utility of ligand 1a, complex 5a and the amine (SC)-H2N-CH(Me)(Ph) (11) as catalysts in the allylic alkylation of (E)-3-phenyl-2-propenyl (cinnamyl) acetate with the nucleophile diethyl 2-methylmalonate (Nu) is reported.  相似文献   

16.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

17.
A series of titanium complexes [(Ar)NC(CF3)CHC(R)O]2TiCl2 (4b: Ar = -C6H4OMe(p), R = Ph; 4c: Ar = -C6H4Me(p), R = Ph; 4d: Ar = -C6H4Me(o), R = Ph; 4e: Ar = α-Naphthyl, R = Ph; 4f: Ar = -C6H5, R = t-Bu; 4g: Ar = -C6H4OMe(p); R = t-Bu; 4h: Ar = -C6H4Me(p); R = t-Bu; 4i: Ar = -C6H4Me(o); R = t-Bu) has been synthesized and characterized. X-ray crystal structures reveal that complexes 4b, 4c and 4h adopt distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4b-c and 4f-i are active catalysts for ethylene polymerization and ethylene/norbornene copolymerization, and produce high molecular weight polyethylenes and ethylene/norbornene alternating copolymers. In addition, the complex 4c/MMAO catalyst system exhibits the characteristics of a quasi-living copolymerization of ethylene and norbornene with narrow molecular weight distribution.  相似文献   

18.
[CpCo(oxddt)] complex (2, oxddt = o-xylenediyldithioethylene-1,2-dithiolate, Cp = η5-cyclopentadienyl) was obtained from o-xylenediyldithioethylene-1,3-dithiol-2-one (OC(oxddt)) (1). 2 further reacted with diazoalkanes (N2CHR) to form some alkylidene-bridged adducts [CpCo(CHR)(oxddt)] (R = H (3a), SiMe3 (3b)). Adduct 3a further reacted with protic acids (HX) to give some S-methylated adducts [CpCo(X)(oxddt)(S-Me)] (X = Cl (4a), OCOCF3 (4c)), followed by the Co-C bond cleavage in the three-membered cobaltathiirane ring. Two different Z-shaped and U-shaped molecular structures were observed by X-ray diffraction studies. In the former structure (Z), the dithiolene and o-xylylene planes are located at almost parallel position each other, and in the latter structure (U), both planes are not parallel but the o-xylylene moiety is located closer to the dithiolene plane than the Z-shaped one. The Z-shaped structure involves 1 and 2. The U-shaped structure involves 3a, 3b, 4a and 4c. Complex 1 showed a one-dimensional chain through intermolecular π-π interaction in the crystal. Complex 2 had a dimeric interaction between dithioethylenedithiolate moieties (S2C2S2) in the oxddt. The SiMe3 group in 3b was placed at an exo-position with respect to the cobaltadithiolene ring due to a steric hindrance from the U-shaped oxddt ligand. In 4a, the X and Me groups are located at the opposite side of the dithiolene plane (anti-form) but in 4c, both groups are presented at the same side of the dithiolene plane (syn-form). The NMR analysis of 4a in solution indicated existence of both anti- and syn-isomers (7:1).  相似文献   

19.
The dialkyl complexes, (R = Pri, R′ = Me (2a), CH2Ph (3a); R = Bun, R′ = Me (2b), CH2Ph (3b); R = But, R′ = Me (2c), CH2Ph (3c); R = Ph, R′ = Me (2d), CH2Ph (3d)), have been synthesized by the reaction of the ansa-metallocene dichloride complex, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}Cl2] (R = Pri (1a), Bun (1b), But (1c), Ph (1d)), and two molar equivalents of the alkyl Gringard reagent. The insertion reaction of the isocyanide reagent, CNC6H3Me2-2,6, into the zirconium-carbon σ-bond of 2 gave the corresponding η2-iminoacyl derivatives, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}{η2-MeCNC6H3Me2-2,6}Me] (R = Pri (4a), Bun (4b), But (4c), Ph (4d)). The molecular structures of 1b, 1c and 3b have been determined by single-crystal X-ray diffraction studies.  相似文献   

20.
The organotin(IV) complexes R2Sn(tpu)2 · L [L = 2MeOH, R = Me (1); L = 0: R = n-Bu (2), Ph (3), PhCH2 (4)], R3Sn(Hthpu) [R = Me (5), n-Bu (6), Ph (7), PhCH2 (8)] and (R2SnCl)2 (dtpu) · L [L = H2O, R = Me (9); L = 0: R = n-Bu (10), Ph (11), PhCH2 (12)] have been synthesized, where tpu, Hthpu and dtpu are the anions of 6-thiopurine (Htpu), 2-thio-6-hydroxypurine (H2thpu) and 2,6-dithiopurine (H2dtpu), respectively. All the complexes 1-12 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. And complexes 1, 2, 7 and 9 have also been determined by X-ray crystallography, complexes 1 and 2 are both six-coordinated with R2Sn coordinated to the thiol/thione S and heterocyclic N atoms but the coordination modes differed. As for complex 7 and 9, the geometries of Sn atoms are distorted trigonal bipyramidal. Moreover, the packing of complexes 1, 2, 7 and 9 are stabilized by the hydrogen bonding and weak interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号