首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A high-performance liquid chromatographic (HPLC) assay method for assessing the degradation of tolmetin (TLM) is developed and validated under acidic, basic, and photoirradiated conditions. The HPLC method includes an Inertsil 5 ODS-3V column (250- x 4.6-mm i.d.), guard column of Inertsil 7 ODS-3V (50- x 4.6-mm i.d.), mobile phase of CH(3)OH-1% HOAc (64:36, v/v), and UV detection at 254 nm. The developed method satisfies the system suitability criteria, peak integrity, and resolution for the parent drug and its degradants. The established assay method exhibits good selectivity and specificity suitable for stability measurements. From the intra- and interday tests of six replicates, the coefficients of variation are between 0.20% and 1.77% for the former, and 0.12% and 3.40% for the latter. Recoveries are found to be 98.7-101.7%. TLM is determined to be more reactive when exposed to light and acidic conditions, yet TLM is stable in a basic medium. A kinetic study of the photodegradation of TLM shows that it follows an apparent first-order reaction in three alcoholic solvents.  相似文献   

2.
A simple, sensitive, and selective stability indicating high performance liquid chromatographic method has been developed and validated for quantitative analysis of carprofen (CPF) in presence of its degradation products. All degradation products in acid hydrolysis and photolysis were separated, identified by mass spectroscopic method and probable structures were elucidated. The forced degradation studies were performed on a bulk sample of CPF by using various methods like 0.1 M hydrochloric acid, 0.1 M sodium hydroxide, 0.33% hydrogen peroxide (H(2)O), heating at 60°C and exposure to UV light at 254 nm. A 5 μm particle octa desyl silane (ODS) column (150 mm × 4.6 mm) was used with acetonitrile-ammonium acetate (100 mM, pH-6.7) 40:60 (v/v) as a mobile phase at flow rate of 1.2 mL/min. Column oven temperature was maintained at 30°C and quantitation was achieved at 239 nm on the basis of peak area. The linear range and correlation coefficient (r(2)) was found 0.5-60 μg/mL and 0.9999 respectively. The limit of detection (LOD) and limit of quantitation (LOQ) were obtained 0.066 μg/mL and 0.20 μg/mL respectively . The proposed method was found to be suitable and accurate for quantitative analysis, stability study and characterisation of degradation product of CPF.  相似文献   

3.
《Analytical letters》2012,45(7):1363-1370
ABSTRACT

A rapid, sensitive and stability indicating method for the determination of sparfloxacin (SPAR) by RP - HPLC has been developed on a Merck RP - Select B (5 μm; 12.5 cm x 4.0 mm) column using a mobile phase of water: acetonitrile: triethylamine (80 : 20 : 0.2 v/v) pH of which was adjusted to 2.6 with orthrophosphoric acid. The flow rate was 1 ml / min. and the detection was carried out at 304 nm using Waters 486 variable wavelength detector. The retention time for SPAR was 7.2 min. Linearity range was from 8 - 1000 ppm. The method showed good precision and accuracy when applied to two brands of tablets containing SPAR. In alkaline media SPAR is stable where as it undergoes degradation in acidic and oxidising conditions generating different degradation products the nature of which is required to be established. The proposed method nicely separates the degraded products from SPAR and hence can be used as stability indicating method for the assay of SPAR.  相似文献   

4.
Tapentadol, a centrally acting analgesic was subjected to hydrolysis (acidic, alkaline, and neutral), oxidation, photolysis, humidity, and thermal stress conditions as per International Conference on Harmonization prescribed guidelines. Tapentadol was found susceptible to oxidative stress that produced two major degradation products DP-I and DP-II. However, it was stable to hydrolysis, photolysis, and thermal stress conditions. A simple, sensitive, and accurate high-performance liquid chromatography stability-indicating assay method (liquid chromatography–mass spectrometer compatible) was developed and validated for identification and characterization of stressed degradation products of Tapentadol. The chromatographic separation of the drug and its degradation products were achieved on Inertsil ODS, C18 (250 × 4.6 mm, i.d., 5 µm) column using a 12.5 mM aqueous ammonium acetate buffer (with 0.2% triethyl amine and final pH of buffer was adjusted to 3.60 with glacial acetic acid): acetonitrile (75:25, v/v) as a mobile phase. The degradation products were characterized by liquid chromatography mass spectrometry and subsequently its fragmentation pathway as well as plausible mechanism for generation of degradation products was also proposed. The stability indicating high-performance liquid chromatographic method was validated with respect to linearity, precision, and accuracy.  相似文献   

5.
Macitentan (MAC) is a pulmonary arterial hypertension (PAH) drug marketed as a tablet and often has stability issues in the final dosage form. Quantitative determination of MAC and its associated impurities in tablet dosage form has not been previously reported. This study quantified impurities present in Macitentan tablets using a binary solvent-based gradient elution method using reversed phase-high performance liquid chromatography. The developed method was validated per International Conference on Harmonization (ICH) guidelines and the drug product was subjected to forced degradation studies to evaluate stability. The developed method efficiently separated the drug and impurities (48 min) without interference from solvents, excipients, or other impurities. The developed method met all guidelines in all characteristics with recoveries ranging from 85%-115%, linearity with r2 ≥ 0.9966, and substantial robustness. The stability-indicating nature of the method was evaluated using stressed conditions (hydrolysis:1 N HCl at 80℃/15 min; 1 N NaOH at 25℃/45 min; humidity stress (90% relative humidity) at 25℃ for 24 h, oxidation:at 6% (v/v) H2O2, 80℃/15 min, thermolysis:at 105℃/16 h and photolysis:UV light at 200 Wh/m2; Fluorescent light at 1.2 million luxh). Forced degradation experiments showed that the developed method was effective for impurity profiling. All stressed samples were assayed and mass balance was>96%. Forced degradation results indicated that MAC tablets were sensitive to hydrolysis (acid and alkali) and thermal conditions. The developed method is suitable for both assay and impurity determination, which is applicable to the pharmaceutical industry.  相似文献   

6.
A sensitive, selective, precise, and stability-indicating high-performance thin-layer chromatographic (HPTLC) method for the analysis of stavudine both as a bulk drug and in formulations is developed and validated. The solvent system consisted of toluene-methanol-chloroform-acetone (7.0:3.0:1.0:1.0, v/v/v/v). Densitometric analysis of stavudine is carried out in the absorbance mode at 270 nm. This system is found to give compact spots for stavudine (retention factor value of 0.45 +/- 0.05) following development of chromatoplates with the mobile phase. Stavudine is subjected to acid and alkali hydrolysis, oxidation, dry-heat and wet-heat treatment, and photo and UV degradation. The drug undergoes degradation under acidic and basic conditions, oxidation, and wet-heat degradation. Linearity is found to be in the range of 30-1000 ng/spot with a significantly high value of correlation coefficient. The linear regression analysis data for the calibration plots show a good linear relationship with r2 = 0.9997 +/- 0.05 in the working concentration range of 300 to 1000 ng/spot. The mean value of slope and intercept are 0.10 +/- 0.06 and 22.12 +/- 1.08, respectively. The method is validated for precision, robustness, and recovery. The limits of detection and quantitation are 10 and 30 ng/spot, respectively. The proposed HPTLC method is utilized to investigate the kinetics of the acid degradation process. Arrhenius plot is constructed and activation energy is calculated.  相似文献   

7.
A simple and rapid gradient RP HPLC method for simultaneous separation and determination of venlafaxine and its related substances in bulk drugs and pharmaceutical formulations has been developed. As many as four process impurities and one degradation product of venlafaxine have been separated on a Kromasil KR100-5C18 (4.6 mm x 250 mm; particle size 5 microm) column with gradient elution using 0.3% diethylamine buffer (pH 3.0) and ACN/methanol (90:10 v/v) as a mobile phase. The column was maintained at 40 degrees C and the eluents were monitored with photo diode array detection at 225 nm. The chromatographic behaviour of all the compounds was examined under variable compositions of different solvents, temperatures, buffer concentrations and pH. The method was validated in terms of accuracy, precision and linearity as per ICH guidelines. The inter- and intraday assay precision was < 4.02% (%RSD) and the recoveries were in the range of 96.19-101.14% with %RSD < 1.15%. The correlation coefficients (r2) for calibration curves of venlafaxine as well as impurities were in the range of 0.9942-0.9999. The proposed RP-LC method was successfully applied to the analysis of commercial formulations and the recoveries of venlafaxine were in the range of 99.32-100.67 with %RSD <0.58%. The method could be of use not only for rapid and routine evaluation of the quality of venlafaxine in bulk drug manufacturing units but also for the detection of its impurities in pharmaceutical formulations. Forced degradation of venlafaxine was carried out under thermal, photo, acidic, basic and peroxide conditions and the acid degradation products were characterized by ESI-MS/MS, 1H NMR and FT-IR spectral data.  相似文献   

8.
Kaul N  Agrawal H  Paradkar AR  Mahadik KR 《Talanta》2004,62(4):843-852
A sensitive, selective, precise and stability-indicating high-performance thin-layer chromatographic method of analysis of nevirapine both as a bulk drug and in formulations was developed and validated. The solvent system consisted of toluene-carbon tetrachloride-methanol-acetone-ammonia (3.5:3.5:2.0:1.0:0.05, v/v/v/v/v). Densitometric analysis of nevirapine was carried out in the absorbance mode at 289nm. This system was found to give compact spots for nevirapine (R(f) value of 0.44+/-0.02). Nevirapine was subjected to acid and alkali hydrolysis, oxidation, dry heat and wet heat treatment and photodegradation. The drug undergoes degradation under acidic, basic conditions and oxidation. Also the degraded products were well resolved from the pure drug with significantly different R(f) values. Linearity was found to be in the range of 30-1000ng/spot with significantly high value of correlation coefficient. The linear regression analysis data for the calibration plots showed good linear relationship with r(2)=0.998+/-0.002 in the working concentration range of 300ng/spot to 1000ng/spot. The mean value of slope and intercept were 0.073+/-0.005 and 36.78+/-1.50, respectively. The method was validated for precision, robustness and recovery. The limit of detection and quantitation were 5 and 10ng/spot, respectively. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating one. Moreover, the proposed HPTLC method was utilized to investigate the kinetics of acid degradation process. Arrhenius plot was constructed and activation energy was calculated.  相似文献   

9.
《印度化学会志》2021,98(11):100215
We report herein an accurate, precise, and economical stability indicating high performance thin layer chromatographic (HPTLC) method developed to assess the safety of olanzapine in pharmaceutical formulations. Olanzapine was subjected to forced degradation studies to assess the effect of environmental conditions on its stability. Stress conditions such as hydrolysis under acidic and alkaline environment, degradation and oxidation by heat, light and air were used to study the stability of olanzapine. Mobile phase comprising of toluene: methanol (5:5 v/v) and aluminum plate pre-coated with silica gel 60 F254 as a stationary phase were used for the development of chromatogram by HPTLC technique. Densitometric analysis of olanzapine carried out at 297 ​nm gave sharp symmetrical peak with Rf value of 0.50 and a satisfactory baseline resolution for all components. The drug was found to undergo degradation under acidic, alkaline and oxidative conditions. A single distinct peak in acidic and alkaline media while two peaks obtained as a result of oxidative degradation were well resolved along with the parent drug. The degradation products and parent drug showed significantly different Rf values. The developed HPTLC method gave quick and reproducible results for the olanzapine content in the tablets. The mean recoveries were 100.75% which confirms accuracy of the proposed method. The method was further validated for specificity, ruggedness and robustness. Based on the results, it can be suggested that the developed HPTLC method is quite efficient in separating the olanzapine from its degradation products; hence it can be used by pharmaceutical industries and regulatory bodies for the routine analysis of olanzapine in various pharmaceutical dosage forms.  相似文献   

10.
A simple, sensitive, selective, precise and stability-indicating thin-layer chromatographic method for determination of dutasteride both as a bulk drug and as pharmaceutical tablets was developed and validated as per the International Conference on Harmonization guidelines. The method employed thin-layer chromatography aluminium plates precoated with silica gel 60F254 as the stationary phase and the mobile phase consisted of acetonitrile:methanol:dichloromethane in the ratio of 2.0:1.0:2.0, v/v/v. This solvent system was found to give compact spots for dutasteride (R f value of 0.64 ± 0.02). Densitometric analysis of dutasteride was carried out in the absorbance mode at 244 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r = 0.9943 with respect to peak area in the concentration range of 100–600 ng per band. The method was validated for precision, accuracy, ruggedness and recovery. The limits of detection and quantitation were 7.54 and 22.85 ng per band, respectively. Dutasteride was subjected to acid and alkali hydrolysis, oxidation, photo degradation, dry heat and wet heat treatment. The drug undergoes degradation under acidic, basic conditions, photolytic, oxidative and upon wet and dry heat treatment. The degraded products were well separated from the pure drug. The statistical analysis proves that the developed method for quantification of dutasteride as bulk drug and from pharmaceutical tablets is reproducible and selective. As the method could effectively separate the drug from its degradation products, it can be employed as stability-indicating.  相似文献   

11.
A reversed-phase high-performance liquid chromatographic method for simultaneous separation and determination of citalopram hydrobromide and its process impurities in bulk drugs and pharmaceutical formulations was developed. The separation was accomplished on an Inertsil ODS 3V (250x4.6 mm; particle size 5 mum) column using 0.3% diethylamine (pH = 4.70) and methanol/acetonitrile (55:45 v/v) as mobile phase in a gradient elution mode. The eluents were monitored by a photodiode array detector set at 225 nm. The chromatographic behavior of all the related substances was examined under variable conditions of different solvents, buffer concentrations, and pH. The method was validated in terms of accuracy, precision, and linearity. The method could be of use not only for rapid and routine evaluation of the quality of citalopram in bulk drug manufacturing units but also for the detection of its impurities in pharmaceutical formulations. Three unknown impurities were consistently observed during the analysis of different batches of citalopram. Forced degradation of citalopram was carried out under thermal, photo, acidic, alkaline, and peroxide conditions. The degradation products and unknown impurities were isolated and characterized by ESI-MS/MS, (1)H NMR, and FT-IR spectroscopy.  相似文献   

12.
The X‐ray diagnostic agent sodium diatrizoate (DTA) was studied for chemical degradation. The 3,5‐diamino derivative was found to be the alkaline and acidic degradation product. The 3,5‐diamino degradate is also the synthetic precursor of DTA and it is proved to have cytotoxic and mutagenic effects. A sensitive, selective and precise high‐performance liquid chromatographic stability‐indicating method for the determination of DTA in the presence of its acidic degradation product and in pharmaceutical formulation was developed and validated. Owing to the high toxicity of the degradation product, the kinetics of the acidic degradation process was monitored by the developed RP‐HPLC method. The reaction was found to follow pseudo‐first order kinetics. The kinetic parameters such as rate constant (K ) and half‐life (t ½) were calculated under different temperatures and acid concentrations; activation energy was estimated from the Arrhenius plot. The developed RP‐HPLC method depends on isocratic elution of a mobile phase composed of methanol–water (25:75 v /v; pH adjusted with phosphoric acid), and UV detection at 238 nm. The method showed good linearity over a concentration range of 2–100 μg/mL with mean percentage recovery of 100.04 ± 1.07. The selectivity of the proposed method was tested using laboratory‐prepared mixtures. The proposed method has been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives and the results were statistically compared with the official USP method. Validation of the proposed method was performed according to International Conference on Harmonization guidelines.  相似文献   

13.
A rapid, specific, and reliable isocratic LC–MS/MS method has been developed and validated for the identification and characterization of the stressed degradation products of Entecavir (ETV). ETV, an antiviral drug, was subjected to hydrolysis (acidic, alkaline, and neutral), oxidation, photolysis and thermal stress, as per the international conference on harmonization specified conditions. The drug showed extensive degradation under oxidative and acid hydrolysis stress conditions. However, it was stable to thermal, acidic, neutral, and photolysis stress conditions. A total of five degradation products were observed and the chromatographic separation of the drug and its degradation products were achieved on a Waters Symmetry C18 (250 mm × 4.6 mm, id, 5 μm) column using 20 mM ammonium acetate (pH 3)/acetonitrile (50:50, v/v) as a mobile phase. The degradation products were characterized by LC–MS/MS and its fragmentation pathways were proposed. The LC–MS method was validated with respect to specificity, linearity, accuracy, and precision. No previous reports were found in the literature regarding the degradation behavior of ETV.  相似文献   

14.
A simple and sensitive stability indicating high performance liquid chromatography method was developed for quantification of Daclatasvir hydrochloride in bulk and tablet dosage forms. The analysis was performed on water symmetry analytical column (150 mm?×?3.9 mm, 5 µm), packing octyl silica (Si-[CH2]7-CH3) C8. Mobile phase containing potassium phosphate buffer (pH 2.0) and acetonitrile (38: 62) v/v was used at flow rate 0.7 mL min?1 for isocratic elution. Detection was performed on 304 nm using UV detector. The method was validated appropriately according to the requirements of United State Pharmacopeia and International Conference on Harmonization guideline Q2 (R1). Recovery, precision, linearity and specificity of the method were assured. The correlation coefficient for linearity ranged from 2 to 24 µg mL?1 was (r?>?0.9999). The limits of detection and quantification of Daclatasvir were 0.08 and 0.28 µg mL?1, respectively. Stability studies of Daclatasvir were performed under various stressed conditions, i.e., hydrolytic (acidic, basic and neutral), oxidation, photolytic and thermal conditions, according to International Conference on Harmonization Q1A (R2) and QIB Guidelines. The degradation products were resolved using proposed method and further characterized by MS, NMR and IR spectroscopic analyses. The proposed method was successfully applied to assay determination of bulk drugs and tablet dosage forms.  相似文献   

15.
Compound 2β-carbomethoxy-3β-(4-chlorophenyl)tropane (β-CCT) is a key intermediate for the synthesis of some clinical dopamine transporter (DAT) imaging agents. Potential impurities from synthesis process of β-CCT and degradation during storage might have detrimental effect on the final imaging agents. Thus, it is necessary to guarantee the quality of β-CCT. In this study, a rapid, sensitive and accurate high-performance liquid chromatography (HPLC) method was developed and validated for the analysis of β-CCT and its related substances. The chromatographic separation was achieved on a reverse-phase phenomenex? Gemini C18 column with an isocratic mobile phase consisted of methanol, water and TFA (30:70:0.1 v/v/v). The flow rate was 1.0 mL/min at 30 °C and samples were monitored at 220 nm. The method was validated concerning system suitability, linearity, accuracy, precision, specificity, robustness and stability. The limit of detection (LOD) and the limit of quantification (LOQ) of β-CCT were 0.5 and 1.5 μg/mL, respectively. The linearity range of β-CCT was 1.5–450 μg/mL with a good linear correlation coefficient (R2 = 0.9999) between the peak response and concentration. Specificity investigation through forced degradation experiments displayed that β-CCT was stable in acidic, thermal and photolytic degradation conditions, but significantly unstable in alkaline and oxidative conditions. With the developed chromatographic method, possible impurity α-CCT from synthetic process and potential degradation products could be well separated from β-CCT. Good recovery and precision were manifested in the assay method. These results indicated that the present method would be suitable for not only the quality assurance of β-CCT in regular production sample assays but also the monitoring and determination of its related substances.  相似文献   

16.
Agrawal H  Kaul N  Paradkar AR  Mahadik KR 《Talanta》2003,61(5):581-589
A sensitive, selective, precise and stability indicating high-performance thin layer chromatographic method of analysis of clopidogrel bisulphate both as a bulk drug and in formulations was developed and validated in pharmaceutical dosage form. The method employed TLC aluminium plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of carbon tetrachloride-chloroform-acetone (6:4:0.15, v/v/v). This system was found to give compact spots for clopidogrel bisulphate (Rf value of 0.30±0.01). Clopidogrel bisulphate was subjected to acid and alkali hydrolysis, oxidation, photodegradation and dry heat treatment. Also the degraded products were well separated from the pure drug. Densitometric analysis of clopidogrel bisulphate was carried out in the absorbance mode at 230 nm. The linear regression data for the calibration plots showed good linear relationship with r2=0.999±0.001 in the concentration range of 200-1000 ng. The mean value of correlation coefficient, slope and intercept were 0.999±0.001, 0.093±0.011 and 8.83±0.99, respectively. The method was validated for precision, accuracy, ruggedness and recovery. The limits of detection and quantitation were 40 and 120 ng per spot, respectively. The drug undergoes degradation under acidic and basic conditions, oxidation and dry heat treatment. All the peaks of degraded product were resolved from the standard drug with significantly different Rf values. This indicates that the drug is susceptible to acid-base hydrolysis, oxidation and dry heat degradation. Statistical analysis proves that the method is reproducible and selective for the estimation of the said drug. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating one.  相似文献   

17.
A forced degradation study was successfully applied for the development of a stability-indicating assay method for the determination of atazanavir in presence of its degradation products. The method was developed and optimized by analyzing the forcefully degraded samples. Degradation of the drug was done under acidic, alkaline, oxidative, photolytic and thermal stress conditions. The proposed method was able to resolve all of the possible degradation products formed during the stress studies. The major impurities are generated in acidic and alkaline conditions. The product was found stable under thermal, photolytic and oxidative conditions. The developed method was validated for determination of atazanavir, and the method was found to be equality applicable to study the impurities formed during routine and forced degradation of atazanavir.  相似文献   

18.

A simple, sensitive, selective, precise and stability indicating high-performance thin-layer chromatographic method was developed for the determination of tamsulosin (TAM) in bulk and tablet formulation. Validation was carried out in compliance with International Conference on Harmonization guidelines. The method employed thin-layer chromatography aluminium plates pre-coated with silica gel 60F254 as the stationary phase and the mobile phase consisted of acetonitrile/methanol/dichloromethane (2.0: 1.0: 2.0, v/v/v). This solvent system was found to give compact spots for tamsulosin (R f = 0.27 ± 0.02). Densitometric analysis of TAM was carried out in the absorbance mode at 286 nm. Linear regression analysis showed good linearity (r 2 = 0.9993) with respect to peak area in the concentration range of 300–800 ng per band. The method was validated for precision, accuracy, ruggedness and recovery. Limits of detection and quantitation were 8.49 and 25.72 ng per band, respectively. TAM was subjected to acid and alkali hydrolysis, oxidation, photo degradation, dry heat and wet heat treatment. The drug underwent degradation under acidic, basic and photolytic conditions. The degraded products were well separated from the pure drug. Statistical analysis proved that the developed method, used for quantification of TAM as a bulk drug and present in pharmaceutical tablets, was reproducible and selective.

  相似文献   

19.
A simple, sensitive, selective, precise and stability indicating high-performance thin-layer chromatographic method was developed for the determination of tamsulosin (TAM) in bulk and tablet formulation. Validation was carried out in compliance with International Conference on Harmonization guidelines. The method employed thin-layer chromatography aluminium plates pre-coated with silica gel 60F254 as the stationary phase and the mobile phase consisted of acetonitrile/methanol/dichloromethane (2.0: 1.0: 2.0, v/v/v). This solvent system was found to give compact spots for tamsulosin (R f = 0.27 ± 0.02). Densitometric analysis of TAM was carried out in the absorbance mode at 286 nm. Linear regression analysis showed good linearity (r 2 = 0.9993) with respect to peak area in the concentration range of 300–800 ng per band. The method was validated for precision, accuracy, ruggedness and recovery. Limits of detection and quantitation were 8.49 and 25.72 ng per band, respectively. TAM was subjected to acid and alkali hydrolysis, oxidation, photo degradation, dry heat and wet heat treatment. The drug underwent degradation under acidic, basic and photolytic conditions. The degraded products were well separated from the pure drug. Statistical analysis proved that the developed method, used for quantification of TAM as a bulk drug and present in pharmaceutical tablets, was reproducible and selective.  相似文献   

20.
A stability-indicating HPLC assay method was developed for the quantitative determination of tadalafil in bulk samples and in pharmaceutical dosage forms in the presence of the degradation products. It involved a 250 mm × 4.6 mm, 5 μm C-18 column. The gradient LC method employs solution A and B as mobile phase. Solution A contains a mixture of buffer (phosphate buffer and tetra-n-butyl ammonium hydrogen sulfate) pH 2.5: acetonitrile (80:20, v/v) and solution B contains a mixture of water: acetonitrile (20:80, v/v). The flow rate was 1.0 mL min−1 and the detection wavelength was 220 nm. The retention time of tadalafil is about 17 min. Tadalafil was subjected to different ICH prescribed stress conditions. Degradation was found to occur in hydrolytic and to some extent in oxidative stress conditions, while the drug was stable to photolytic and thermal stress. The drug was particularly labile under alkaline hydrolytic conditions. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. The assay of stress samples was calculated against a qualified reference standard and the mass balance was close to 99.5%. The developed RP-LC method was validated with respect to linearity, accuracy, precision and ruggedness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号