首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
An ab initio investigation of the potential energy surfaces and vibrational energies and wave functions of the anion, neutral, and cation Cu(H(2)O) complexes is presented. The equilibrium geometries and harmonic frequencies of the three charge states of Cu(H(2)O) are calculated at the MP2 level of theory. CCSD(T) calculations predict a vertical electron detachment energy for the anion complex of 1.65 eV and a vertical ionization potential for the neutral complex of 6.27 eV. Potential energy surfaces are calculated for the three charge states of the copper-water complexes. These potential energy surfaces are used in variational calculations of the vibrational wave functions and energies and from these, the dissociation energies D(0) of the anion, neutral, and cation charge states of Cu(H(2)O) are predicted to be 0.39, 0.16, and 1.74 eV, respectively. In addition, the vertical excitation energies, that correspond to the 4 (2)P<--4 (2)S transition of the copper atom, and ionization potentials of the neutral Cu(H(2)O) are calculated over a range of Cu(H(2)O) configurations. In hydrogen-bonded, Cu-HOH configurations, the vertical excitation and ionization energies are blueshifted with respect to the corresponding values for atomic copper, and in Cu-OH(2) configurations where the copper atom is located near the oxygen end of water, both quantities are redshifted.  相似文献   

2.
We report the femtosecond nuclear dynamics of Cu(CD3OD) van der Waals clusters, investigated using photodetachment-photoionization spectroscopy. Photodetachment of an electron from Cu-(CD3OD) with a 150 fs, 398 nm laser pulse produces a vibrationally excited neutral complex that undergoes ligand reorientation and dissociation. The dynamics of Cu(CD3OD) on the neutral surface is interrogated by delayed femtosecond resonant two-photon ionization. Analysis of the resulting time-dependent signals indicates that the nascent Cu(CD3OD) complex dissociates on two distinct time scales of 3 and 30 ps. To understand the origins of the observed time scales, complimentary studies were performed. These included measurement of the photoelectron spectrum of Cu-(CD3OD) as well as a series of calculations of the structure and the electronic and vibrational energies of the anion and neutral complexes. Based on the comparisons of the experimental and calculated results for Cu(CD3OD) with those obtained from earlier studies of Cu(H2O), we conclude that the 3 ps time scale reflects the energy transfer from the rotation of CD3OD in the complex to the dissociation coordinate, while the 30 ps time scale reflects the energy transfer from the excited methyl torsion states to the dissociation coordinate.  相似文献   

3.
The ultrafast relaxation dynamics of Cu(H(2)O)(2) is investigated using femtosecond photodetachment-photoionization spectroscopy. In addition, stationary points on the Cu(H(2)O)(2) anion, neutral, and cation potential energy surfaces are characterized by ab initio electronic structure calculations. Electron photodetachment from Cu(-)(H(2)O)(2) initiates the dynamics on the ground-state potential energy surface of neutral Cu(H(2)O)(2). The resulting Cu(H(2)O)(2) complexes experience large-amplitude H(2)O reorientation and dissociation. The time evolution of the Cu(H(2)O)(2) fragmentation products is monitored by time-resolved resonant multiphoton ionization. The parent ion, Cu(+)(H(2)O)(2), is not detected above background levels. The rise to a maximum of the Cu(+) signal from Cu(-)(H(2)O)(2), and the decay of the Cu(+)(H(2)O) signal from Cu(-)(H(2)O)(2) have similar tau approximately 10 ps time dependences to the corresponding signals from Cu(-)(H(2)O), but display clear differences at very short and long times. The experimental observations can be understood in terms of the following picture. Prompt dissociation of H(2)O from nascent Cu(H(2)O)(2) gives rise to a vibrationally excited Cu(H(2)O) complex, which dissociates to Cu+H(2)O due to coupling of H(2)O internal rotation to the dissociation coordinate. This prompt dissociation removes all intra-H(2)O vibrational excitation from the intermediate Cu(H(2)O) fragment, which quenches the long time vibrational predissociation to Cu+H(2)O previously observed in analogous experiments on Cu(-)(H(2)O).  相似文献   

4.
Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5) x 10(4) s(-1) for cluster sizes of 5< or =n< or =16. Mixed CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n+ cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.  相似文献   

5.
The efficiency of the multiconfigurational time-dependent Hartree (MCTDH) method for calculating the initial-state selected dissociation probability of H(2)(v=0,j=0) on Cu(100) is investigated. The MCTDH method is shown to be significantly more efficient than standard wave packet methods. A large number of single-particle functions is required to converge the initial-state selected reaction probability for dissociative adsorption. Employing multidimensional coordinates in the MCTDH ansatz (mode combination) is found to be crucial for the efficiency of these MCTDH calculations. Perspectives towards the application of the MCTDH approach to study dissociative adsorption of polyatomic molecules on surfaces are discussed.  相似文献   

6.
Tunable vacuum ultraviolet (VUV) photoionization studies of water clusters are performed using 10-14 eV synchrotron radiation and analyzed by reflectron time-of-flight (TOF) mass spectrometry. Photoionization efficiency (PIE) curves for protonated water clusters (H2O)(n)H+ are measured with 50 meV energy resolution. The appearance energies of a series of protonated water clusters are determined from the photoionization threshold for clusters composed of up to 79 molecules. These appearance energies represent an upper limit of the adiabatic ionization energy of the corresponding parent neutral water cluster in the supersonic molecular beam. The experimental results show a sharp drop in the appearance energy for the small neutral water clusters (from 12.62 +/- 0.05 to 10.94 +/- 0.06 eV, for H2O and (H2O)4, respectively), followed by a gradual decrease for clusters up to (H2O)23 converging to a value of 10.6 eV (+/-0.2 eV). The dissociation energy to remove a water molecule from the corresponding neutral water cluster is derived through thermodynamic cycles utilizing the dissociation energies of protonated water clusters reported previously in the literature. The experimental results show a gradual decrease of the dissociation energy for removal of one water molecule for small neutral water clusters (3 相似文献   

7.
Femtosecond nuclear dynamics of mass-selected neutral Ag2 and Ag2O2 clusters are investigated with the 'negative ion-to neutral-to positive ion'(NeNePo) technique. For the bare silver dimer, wave packet dynamics occurring in the neutral electronic ground state and in the first excited triplet state are observed after photodetachment from the anion with 3.05 eV photon energy. While the dynamics in the ground state lead to an oscillatory structure in the NeNePo-pump-probe spectra with a vibrational constant of 185 cm-1, the dynamics in the triplet state are assigned to a bound-free transition leading to dissociation. Photodetachment from the Ag2O2- complex results in the desorption of O2. The experimental data clearly show the influence of the desorbing oxygen ligand on the nuclear dynamics of the silver dimer inducing a red shift in the vibrational frequency and an intensity enhancement of the oscillatory signal.  相似文献   

8.
A time-dependent wave packet method has been used to study different competing products of H(2)+H(2) collisions: four center reaction, collision induced dissociation, reactive dissociation, and three-body complex formation. A three-degree-of-freedom reduced dimensionality model has been used for five different geometries of the colliding complex (parallel H, crossed X, collinear L, and two T-shaped geometries T(I) and T(II)), with reactants in selected vibrational states with one diatom vibrationally "hot" and the other one vibrationally "cold." Product probabilities have been calculated using two potential energy surfaces [J. Chem. Phys. 101, 4004 (1994); J. Chem. Phys. 116, 666 (2002)] in order to compare their performance in the dynamics. The regions of the potential energy surfaces responsible of the threshold behavior of the probabilities have been identified. Overall, we have found that the most recent potential energy surface is less anisotropic, provides a smaller propensity for insertion-type processes, and gives lower energy thresholds.  相似文献   

9.
We present calculated dissociative attachment cross sections for ClCN and BrCN in the 0-20 eV energy range. In this energy region, both Cl(-)Br(-) and CN(-) fragments are possible and are produced via dissociation along repulsive resonance curves. Electron scattering calculations, using the complex Kohn variational method and molecular structure calculations, were used to determine the three-dimensional surfaces and resonance parameters. The nuclear dynamics was studied in one, two, and three dimensions using time-dependent wave packet methods, employing the multiconfiguration time-dependent Hartree method for multiple dimensions. The calculated cross sections are reported and compared to the available experiments. Couplings between resonance states will also be examined and discussed.  相似文献   

10.
The bicoordinated dihydroxyphosphenium ion P(OH)2+ (1+) was generated specifically by charge-exchange dissociative ionization of triethylphosphite and its connectivity was confirmed by collision induced dissociation and neutralization-reionization mass spectra. The major dissociation of 1+ forming PO+ ions at m/z 47 involved another isomer, O=P-OH2+ (2+), for which the optimized geometry showed a long P-OH2 bond. Dissociative 70-eV electron ionization of diethyl phosphite produced mostly 1+ together with a less stable isomer, HP(O)OH+ (3+). Ion 2+ is possibly co-formed with 1+ upon dissociative 70-eV electron ionization of methylphosphonic acid. Neutralization-reionization of 1+ confirmed that P(OH)2* (1) was a stable species. Dissociations of neutral 1, as identified by variable-time measurements, involved rate-determining isomerization to 2 followed by fast loss of water. A competitive loss of H occurs from long-lived excited states of 1 produced by vertical electron transfer. The A and B states undergo rate-determining internal conversion to vibrationally highly excited ground state that loses an H atom via two competing mechanisms. The first of these is the direct cleavage of one of the O-H bonds in 1. The other is an isomerization to 3 followed by cleavage of the P-H bond to form O=P-OH as a stable product. The relative, dissociation, and transition state energies for the ions and neutrals were studied by ab initio and density functional theory calculations up to the QCISD(T)/6-311+G(3df,2p) and CCSD(T)/aug-cc-pVTZ levels of theory. RRKM calculations were performed to investigate unimolecular dissociation kinetics of 1. Excited state geometries and energies were investigated by a combination of configuration interaction singles and time-dependent density functional theory calculations.  相似文献   

11.
Pure, neutral formic acid (HCOOH)n+1 clusters and mixed (HCOOH)(H2O) clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV using a very compact, capillary discharge, soft x-ray laser. During the ionization process, neutral clusters suffer little fragmentation because almost all excess energy above the vertical ionization energy is taken away by the photoelectron, leaving only a small part of the photon energy deposited into the (HCOOH)n+1+ cluster. The vertical ionization energy minus the adiabatic ionization energy is enough excess energy in the clusters to surmount the proton transfer energy barrier and induce the reaction (HCOOH)n+1+-->(HCOOH)nH+ +HCOO making the protonated (HCOOH)nH+ series dominant in all data obtained. The distribution of pure (HCOOH)nH+ clusters is dependent on experimental conditions. Under certain conditions, a magic number is found at n=5. Metastable dissociation rate constants of (HCOOH)nH+ are measured in the range (0.1-0.8)x10(4) s(-1) for cluster sizes 4相似文献   

12.
We study quantum dynamics of the multichannel reactions of H(2)CO including the molecular and radical dissociation channels as well as the isomerization ones, H(2)CO-->trans-HCOH and trans-HCOH-->cis-HCOH. For this purpose, the previously developed potential energy function [T. Yonehara and S. Kato, J. Chem. Phys. 117, 11131 (2002)] is refined to give accurate transition state energies and to describe the radical dissociation channel. The cumulative reaction probabilities for the molecular dissociation and two isomerization channels are calculated by using the full Watson Hamiltonian. We also carry out wave packet dynamics calculations starting from the transition state region for the molecular dissociation. A contracted basis set for the angular coordinates is constructed to reduce the size of dynamics calculations. The intramolecular vibrational relaxation dynamics is found to be fast and almost complete within 300 fs. Using the energy filtered wave functions, the time propagation of HCOH population is obtained in the energy range from 81 to 94 kcal/mol. The branching ratio of the radical product is estimated by calculating the time dependent reactive fluxes to the molecular and radical dissociation products.  相似文献   

13.
The sequential bond energies of Ca(2+)(H(2)O)(x) complexes, where x = 1-8, are measured by threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. From an electrospray ionization source that produces an initial distribution of Ca(2+)(H(2)O)(x) complexes where x = 6-8, complexes down to x = 2 are formed using an in-source fragmentation technique. Ca(2+)(H(2)O) cannot be formed in this source because charge separation into CaOH(+) and H(3)O(+) is a lower energy pathway than simple water loss from Ca(2+)(H(2)O)(2). The kinetic energy dependent cross sections for dissociation of Ca(2+)(H(2)O)(x) complexes, where x = 2-9, are examined over a wide energy range to monitor all dissociation products and are modeled to obtain 0 and 298 K binding energies. Analysis of both primary and secondary water molecule losses from each sized complex provides thermochemistry for the sequential hydration energies of Ca(2+) for x = 1-8 and the first experimental values for x = 1-4. Additionally, the thermodynamic onsets leading to the charge separation products from Ca(2+)(H(2)O)(2) and Ca(2+)(H(2)O)(3) are determined for the first time. Our experimental results for x = 1-6 agree well with previously calculated binding enthalpies as well as quantum chemical calculations performed here. Agreement for x = 1 is improved when the basis set on calcium includes core correlation.  相似文献   

14.
The photodissociation of methyl iodide in the A band is studied by full-dimensional (9D) wave packet dynamics calculations using the multiconfigurational time-dependent Hartree approach. The potential energy surfaces employed are based on the diabatic potentials of Xie et al. [J. Phys. Chem. A 2000, 104, 1009] and the vertical excitation energy is taken from recent ab initio calculations [Alekseyev et al. J. Chem. Phys.2007, 126, 234102]. The absorption spectrum calculated for exclusively parallel excitation agrees well with the experimental spectrum of the A band. The electronic population dynamics is found to be strongly dependent on the motion in the torsional coordinate related to the H(3)-C-I bend, which presumably is an artifact of the diabatic model employed. The calculated fully product state-selected partial spectra can be interpreted based on the reflection principle and suggests strong coupling between the C-I stretching and the H(3)-C-I bending motions during the dissociation process. The computed rotational and vibrational product distributions typically reproduce the trends seen in the experiment. In agreement with experiment, a small but significant excitation of the total symmetric stretching and the asymmetric bending modes of the methyl fragment can be seen. In contrast, the umbrella mode of the methyl is found to be too highly excited in the calculated distributions.  相似文献   

15.
The sequential photodissociation dynamics of (HI)2 is studied by means of a nonadiabatic wave packet treatment starting from the I*-HI complex. The model reproduces the main experimental findings for photolysis with 266 nm radiation. The results confirm that some of the H atoms dissociated from the I*-HI complex deactivate the I* atom through a HI* intracluster collision which induces an I*-->I electronically nonadiabatic transition. As a consequence, these H fragments become very fast by acquiring nearly all the I* excitation energy, equivalent to the I*I spin-orbit splitting. A most interesting result is the high production of bound I2 fragments in highly excited rovibrational states in the photolysis, indicating that the H dissociation is mainly direct.  相似文献   

16.
We present a detailed theoretical investigation of the dynamics corresponding to the strongly endothermic Br + H(2) (v = 0-1, j = 0) → H + HBr reaction in the 0.85 to 1.9 eV total energy range. State-averaged and state-to-state results obtained through time-independent wave packet (TIWP) and time-independent quantum mechanical (TIQM) calculations and quasiclassical trajectories (QCT) are compared and analyzed. The agreement in the results obtained with both quantum mechanical results is very good overall. However, although QCT calculations reproduce the general features, their agreement with the QM results is sometimes only qualitative. The analysis of the mechanism based on state-averaged results turns out to be deceptive and conveys an oversimplified picture of the reaction consistent with a direct-rebound mechanism. Consideration of state-to-state processes, in contrast, unveils the existence of multiple mechanisms that give rise to a succession of maxima in the differential cross section (DCS). Such mechanisms correlate with different sets of partial waves and display similar collision times when analyzed through the time-dependent DCS.  相似文献   

17.
The efficiency of the numerical propagators for solving the time-dependent Schr?dinger equation in the wave packet approach to reactive scattering is of vital importance. In this Perspective, we first briefly review the propagators used in quantum reactive scattering calculations and their applications to triatomic reactions. Then we present a detailed comparison of about thirty higher-order split operator propagators for solving the Schr?dinger equation with their applications to the wave packet evolution within a one-dimensional Morse potential, and the total reaction probability calculations for the H + HD, H + NH, H + O(2), and F + HD reactions. These four triatomic reactions have quite different dynamic characteristics and thus provide a comprehensive picture of the relative advantages of these higher-order propagation methods for describing reactive scattering dynamics. Our calculations reveal that the most often used second-order split operator method is typically more efficient for a direct reaction, particularly for those involving flat potential energy surfaces. However, the optimal higher-order split operator methods are more suitable for a reaction with resonances and intermediate complexes or a reaction experiencing potential energy surface with fluctuations of considerable amplitude. Three 4th-order and one 6th-order split operator methods, which are most efficient for solving reactive scattering in various conditions among the tested ones, are recommended for general applications. In addition, a brief discussion on the relative performance between the Chebyshev real wave packet method and the split operator method is given. The results in this Perspective are expected to stimulate more applications of (high-order) split operators to the quantum reactive scattering calculation and other related problems.  相似文献   

18.
19.
We report a dynamics study of the reaction N((2)D) + H(2) (v=0, j=0-5) --> NH + H using the time-dependent quantum wave packet method and a recently reported single-sheeted double many-body expansion potential energy surface for NH(2)(1(2)A' ') which has been modeled from accurate ab initio multireference configuration-interaction calculations. The calculated probabilities for (v=0, j=0-5) are shown to display resonance structures, a feature also visible to some extent in the calculated total cross sections for (v=0, j=0). A comparison between the calculated centrifugal-sudden and coupled-channel reaction probabilities validate the former approximation for the title system. Rate constants calculated using a uniform J-shifting scheme and averaged over a Boltzmann distribution of rotational states are shown to be in good agreement with the available experimental values. Comparisons with other theoretical results are also made.  相似文献   

20.
We investigate the vibronic and spin-orbit (SO) coupling effects in the state-selected dynamics of the title reaction with the aid of a time-dependent wave packet approach. The ab initio potential energy surfaces of Capecchi and Werner [Science 296, 715 (2002)] have been employed for this purpose. Collinear approach of the Cl((2)P) atom to the H(2) molecule splits the degeneracy of the (2)P state and gives rise to (2)Sigma and (2)Pi electronic states. These two surfaces form a conical intersection at this geometry. These states transform as 1 (2)A('), 1 (2)A("), and 2 (2)A('), respectively, at the nonlinear configurations of the nuclei. In addition, the SO interaction due to Cl atom further splits these states into (2)Sigma(1/2), (2)Pi(3/2), and (2)Pi(1/2) components at the linear geometry. The ground-state reagent Cl((2)P(3/2))+H(2) correlates with (2)Sigma(1/2) and (2)Pi(3/2), where as the SO excited reagent Cl(*)((2)P(1/2))+H(2) correlates with (2)Pi(1/2) at the linear geometry. In order to elucidate the impact of the vibronic and SO coupling effects on the initial state-selected reactivity of these electronic states we carry out quantum scattering calculations based on a flux operator formalism and a time-dependent wave packet approach. In this work, total reaction probabilities and the time dependence of electronic population of the system by initiating the reaction on each of the above electronic states are presented. The role of conical intersection alone on the reaction dynamics is investigated with a coupled two-state model and for the total angular momentum J=0 (neglecting the electronic orbital angular momentum) both in a diabatic as well as in the adiabatic electronic representation. The SO interaction is then included and the dynamics is studied with a coupled three-state model comprising six diabatic surfaces for the total angular momentum J=0.5 neglecting the Coriolis Coupling terms of the Hamiltonian. Companion calculations are carried out for the uncoupled adiabatic and diabatic surfaces in order to explicitly reveal the impact of two different surface coupling mechanisms in the dynamics of this prototypical reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号