首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
A novel core-shell luminol-based SiO2 nanoparticle While these nanoparticles were used as electrogenerated was synthesized by two step micro-emulsion method. chemiluminescence (ECL) reagent, the electrochemical (EC) reaction as well as the subsequent chemiluminescence (CL) reaction not only could be separated spatially, but also presented high efficiency for analytical purpose. In this case, the core-shell luminol-based SiO2 nanoparticles offered more potential to avoid the contradiction between the EC and the CL reaction conditions. A new ECL method based on the nanoparticle was developed, and isoniazid was selected as a model analyte to illustrate the characteristics of this new ECL method. Under the selected conditions, the proposed ECL response to isoniazid concentration was linear in the range of 1.0 ×10^-10 to 1.0 × 10^-6 g/mL with 2 × 10^-11g/mL detection limit.  相似文献   

2.
Introduction The analysis of DNA sequence and DNA mutant detection play fundamental roles in the rapid development of molecular diagnostics and in the anticancer drug screening. Therefor many detection techniques of DNA sequence have been developed in recent years. These techniques mainly depend on the nucleic acid hybridization1 and their sensitivities are related to the specific activity of the label linked to the DNA probe. The degree of hybridization of probe to its complementary DN…  相似文献   

3.
A novel electrochemiluminescence (ECL) sensor for napropamide determination was prepared using the water‐soluble sulfonated graphene (sulfonated‐G) as solid‐phase microextraction (SPME) material, based on selective preconcentration of target onto an electrode and followed by luminol ECL detection. The effects of pH, adsorption time, buffer solution and the luminescence agent on ECL intensity were optimized. Under the optimized conditions (pH 6; adsorption time 5 min; buffer solution pH 11.0 Na2CO3 aHCO3; luminescence agent luminol; stirring speed 400 rpm), the lowest detection limits (1.0 µg L−1) and good linear range (r2≥0.99) were obtained for the analyte, indicating the superior performance of Nafion/sulfonated‐G/GCE for detecting napropamide.  相似文献   

4.
The traditional luminol–H2O2 electrochemiluminescence (ECL) sensing platform suffers from self‐decomposition of H2O2 at room temperature, hampering its application for quantitative analysis. In this work, for the first time we employ iron single‐atom catalysts (Fe‐N‐C SACs) as an advanced co‐reactant accelerator to directly reduce the dissolved oxygen (O2) to reactive oxygen species (ROS). Owing to the unique electronic structure and catalytic activity of Fe‐N‐C SACs, large amounts of ROS are efficiently produced, which then react with the luminol anion radical and significantly amplify the luminol ECL emission. Under the optimum conditions, a Fe‐N‐C SACs–luminol ECL sensor for antioxidant capacity measurement was developed with a good linear range from 0.8 μm to 1.0 mm of Trolox.  相似文献   

5.
An electrochemiluminescent (ECL) method has been developed for the determination of melamine based on the inhibition of luminol ECL. A significant luminol ECL can be found at 1.47 V in the phosphate buffer solution at high pHs and low potential scan rates, this ECL signal can be inhibited obviously by melamine. The decrease of ECL intensity was linearly proportional to the logarithm of melamine concentration in the range of 1–100 ng/mL (R2=0.9911) and with the detection limit of 0.1 ng/mL. The method has been applied successfully to determine melamine in dairy products and melamine tableware, the recoveries were in the range of 98.5%–103.7% and 95.5%–106.0%, respectively. The mechanism of the inhibition effect was also proposed, the active oxygen (O2· −) generated from the electrooxidation of OH reacted with luminol anion (L· −) to generate light emission, and the present of melamine can eliminate the active oxygen, which cause the decrease of the ECL intensity.  相似文献   

6.
The present work proposed a novel ECL protocol to probe the interactions between mimic enzymes and small biological molecules. Iron(II) phthalocyanine (FePc) and two imidazoles (imidazole and histidine) were chosen as model molecules of mimic enzyme and small biological molecules, respectively. The interactions between FePc and the imidazoles were probed by a sensitive luminol–O2 ECL system. Before complexing with the imidazoles, FePc can inhibit luminol–O2 ECL due to its electrocatalysis towards O2, however, after complexing with the imidazoles, FePc decreases the electrocatalysis, leading to the observation of an enhanced luminol–O2 ECL. Additionally, the proposed protocol enables detection limits of 1.0 × 10?8 mol L?1 and 1.0 × 10?7 mol L?1 to be achieved, respectively, for imidazole and histidine under the physiological pH condition (pH 7.4).  相似文献   

7.
Poly(aniline‐luminol‐hemin) nanocomposites are prepared on an electrode surface through electropolymerization, and a highly sensitive electrochemiluminescence (ECL) biosensor for choline is developed based on the poly(aniline‐luminol‐hemin) nanocomposites and an enzyme catalyzed reaction of choline oxidase (CHOD). The obtained nanocomposites are characterized by scanning electron microscopy (SEM), atomic absorption spectrometry (AAS) and ECL. The results indicate that hemin can be incorporated into the poly(aniline‐luminol) nanocomposites using the facile electropolymerization method, and the poly(aniline‐luminol‐hemin) nanocomposites are rod shaped porous nanostructure. Moreover, the poly(aniline‐luminol‐hemin) nanocomposites exhibit higher ECL intensity than poly(aniline‐luminol) nanocomposites in alkaline media due to the catalytic effect of hemin on the ECL of the polymerized luminol and the electron transfer ability of hemin in the nanocomposites. CHOD is immobilized on the surface of the poly(aniline‐luminol‐hemin) nanocomposites modified electrode with glutaraldehyde, and the ECL biosensor based on poly(aniline‐luminol‐hemin)/CHOD exhibits a wider linear range for the choline detection. The enhanced ECL signals are linear with the logarithm of concentration of choline over the range of 1.0×10?11~1.0×10?7 mol L?1 with a low detection limit of 1.2×10?12 mol L?1. Moreover, the proposed biosensor is successfully applied to the detection of choline in milk.  相似文献   

8.
A novel highly sensitive electrochemiluminescence (ECL) detection protocol for mercury(II) ions was developed. Based on the strong and stable thymine? thymine mismatches complexes coordination chemistry, mercury(II) ions can specifically bind to a designed DNA strand, leading to the release of the complimentary DNA strand. The released DNA strand was then captured by magnetic beads modified with specific DNA, and then through the formation of DNA‐linked luminol‐Au nanoparticles (NPs) superstructure, a specific ECL system for mercury(II) ions was developed. Using 3‐aminopropyl‐triethoxysilane as an effective enhancer, the ECL system can detect Hg2+ ion within a linear range from 2.0×10?10 mol L?1 to 2.0×10?8 M, with a detection limit as low as 1.05×10?10 M (3σ). Moreover, this ECL system is highly specific for Hg2+, without interference from other commonly coexisted metal ions, and it can be used for the analysis of real samples.  相似文献   

9.
《Electroanalysis》2017,29(9):2098-2105
An ultrasensitive electrochemiluminescence (ECL) immunosensor for the detection of tetrodotoxin (TTX) is proposed, which are composed of the branched poly‐(ethylenimine) (BPEI) functionalized graphene (BGNs)/Fe3O4‐Au magnetic capture probes and luminol‐capped gold nanocomposites (luminol‐AuNPs) as the signal tag. Herein, a typical sandwich immunecomplex was constructed on the glassy carbon electrode. The BGNs/Fe3O4‐Au hybrids could efficiently conjugate primary antibody via the Au−S chemical bonds or Au−N chemical bonds and rapidly separate under external magnetic field. The introduction of BPEI to GO could enhance the luminol‐ECL intensity. Meanwhile, the multifunctional nanocomposites have been proved with good water‐solubility, excellent electron transfer, outstanding stability, etc. The luminescent luminol‐AuNPs, a high efficient electrochemiluminescence marker, can be assembled on the second antibody, which can produce the ECL signal to achieve the determination of TTX. This proposed ECL immunosensor with a linear range from 0.01–100 ng/mL can be applied in the detection of TTX in real samples with satisfactory results.  相似文献   

10.
《Electroanalysis》2005,17(7):589-598
The effect of 30 phenols and anilines on typical Ru complex electrochemiluminescence (ECL) was systematically investigated under different conditions. It was found that all the tested compounds showed an ECL inhibiting signal. The magnitude of ECL inhibition was related to the position of the substituting group in the benzene ring and decreased in the following order: meta‐>ortho‐>para‐. The oxidation potential of the tested compounds, the ECL spectra and UV‐visible absorption spectra of Ru(bpy) /tripropylamine (TPrA) in the presence of phenols and anilines, and the direct ECL between Ru(bpy) and phenols/aniline were studied. The mechanism of ECL inhibition has been proposed due to energy transfer from the excited state Ru(bpy) to a quinone or ketone or their polymer formed by electro‐oxidation of phenols and anilines. The potential of analytical application was explored by use of the inhibited ECL. The results demonstrate that numerous compounds are detectable with the detection limits in the range of 10?8–10?9 mol/L for Ru(bpy) /TPrA system and in the range of 10?6–10?7 mol/L for Ru(bpy) /C2O system, respectively.  相似文献   

11.
Anodic electrochemiluminescence (ECL) of 3‐mercaptopropionic acid (MPA)‐ capped CdTe/CdS core‐shell quantum dots (QDs) with tripropylamine (TPrA) as the co‐reactant were studied in aqueous (Tris buffer) solution for the first time. The results suggest that the oxidation of TPrA at a glassy carbon electrode (GCE) surface participated in the ECL of QDs, and the onset potential and the intensity of ECL of CdTe/CdS QDs were affected seriously by TPrA, as the co‐reactant, in Tris buffer solution. The onset potential of ECL in this new system was about +0.5 V (vs. Ag/AgCl) and the ECL intensity greatly enhanced when TPrA was present. Various influencing factors, such as the electrolyte, pH, QDs concentration, potential range and scan rates on the ECL were studied. Based on the selective quenching by Cu2+ to the light emission from CdTe/CdS QDs/TPrA system, a highly sensitive and selective method for the determination of Cu2+ was developed. At the optimal conditions, the relative ECL intensity, I0/I, was proportional to the concentration of Cu2+ from 14 nM to 0.21 μM with the detection limit of 6.1 nM based on the signal‐to‐noise ratio of 3. The possible ECL mechanism of QDs and the quenching mechanism of ECL were proposed.  相似文献   

12.
Au clusters with protecting organothiolate ligands and core diameters less than 2 nm are molecule‐like structures, suitable for catalysis, optoelectronics and biology applications. The spectroscopy and electrochemistry of Au250 (Au25[(SCH2CH2Ph)18], SCH2CH2Ph=2‐phenylethanethiol) allowed us to construct a Latimer‐type diagram for the first time, which revealed a rich photoelectrochemistry of the cluster and the unique relationship to its various oxidation states and corresponding excited states. The occurrence of cluster electrochemiluminescence (ECL) was examined in the presence of tri‐n‐propylamine (TPrA) as a co‐reactant and was discovered to be in the near‐infrared (NIR) region with peak wavelengths of 860, 865, and 960 nm, emitted by Au25+*, Au250*, and Au25?*, respectively. The light emissions, with an efficiency up to 103 % relative to that of the efficient Ru(bpy)32+/TPrA system, depended on the kinetics of the reactions between the electrogenerated TPrA radical and Au25z (z=2+, 1+, 1?, and 2?) in the vicinity of the electrode or the bulk Au250. These thermodynamic and kinetic origins were further explored by means of spooling ECL and photoluminescence spectroscopy during a sweep of the potential or at a constant potential applied to the working electrode. NIR‐ECL emissions of the cluster can be tuned in wavelength and intensity by adjusting the applied potential and TPrA concentration based on the above discoveries.  相似文献   

13.
We demonstrate a new approach to manipulate the selective emission in mixed electrogenerated chemiluminescence (ECL) systems, where subtle changes in co‐reactant properties are exploited to control the relative electron‐transfer processes of excitation and quenching. Two closely related tertiary‐amine co‐reactants, tri‐n‐propylamine and N,N‐diisopropylethylamine, generate remarkably different emission profiles: one provides distinct green and red ECL from [Ir(ppy)3] (ppy=2‐phenylpyridinato‐C2,N) and a [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine) derivative at different applied potentials, whereas the other generates both emissions simultaneously across a wide potential range. These phenomena can be rationalized through the relative exergonicities of electron‐transfer quenching of the excited states, in conjunction with the change in concentration of the quenchers over the applied potential range.  相似文献   

14.
A composite film of poly(luminol‐benzidine) was prepared on the graphite electrode surface by electropolymerizing luminol and benzidine in acidic medium. It was found that the poly(luminol‐benzidine) composite film presented better electrochemiluminescence (ECL) analytical performances for H2O2 than that of the polyluminol film. Based on these findings, a more sensitive ECL sensor for H2O2 was developed. At the same time, our investigating results on this composite film revealed that, as a real ECL luminophor in this composite film, the polymeric 3‐aminophthalate presented higher fluorescence quantum yield than that in the pure polyluminol film, which suggested that the excellent ECL performances of the composite film may originate from the enhancement of the ECL luminophor quantum yield. Based on these results, a new method to improve the ECL analytical performances of the polymeric luminol was also proposed.  相似文献   

15.
Electrochemiluminescence (ECL) from tris(2‐phenylpyridine)irdium [Ir(ppy)3] was investigated following cross reaction of its anion with oxidized poly(N‐vinyl‐carbazole) (PVK) and its cation with reduced 2‐(4‐biphenylyl)‐5‐(4‐tert‐butyl‐phenyl)‐1,3,4‐oxadiazole (PBD). Both cross reactions show Ir(ppy)3 emission and the cross reaction of PVK/Ir(ppy)3 showed the highest ECL intensity. The comparisons of the reaction enthalpy and the energy of Ir(ppy)3 light emitting shows that reaction between PVK and Ir(ppy)3 is energy sufficient to populate metal‐to‐ligand charge transfer (MLCT) excited singlet (3.04 eV) of Ir(ppy)3, while the reaction between Ir(ppy)+3 and PBD− · is energy efficient to populate MLCT excited triplet (2.4 eV). The ECL result in solution reveals that the energy released from charge transfer between the Ir(ppy)3 and PVK or PBD is sufficient to produce the excited state of Ir(ppy)3 in solid polymer light‐emitting diodes (PLEDs) based on PVK:PBD hosts doped by Ir(ppy)3. These results obtained will provide further insight into charge‐transfer excitation in PLEDs.  相似文献   

16.
The traditional luminol–H2O2 electrochemiluminescence (ECL) sensing platform suffers from self-decomposition of H2O2 at room temperature, hampering its application for quantitative analysis. In this work, for the first time we employ iron single-atom catalysts (Fe-N-C SACs) as an advanced co-reactant accelerator to directly reduce the dissolved oxygen (O2) to reactive oxygen species (ROS). Owing to the unique electronic structure and catalytic activity of Fe-N-C SACs, large amounts of ROS are efficiently produced, which then react with the luminol anion radical and significantly amplify the luminol ECL emission. Under the optimum conditions, a Fe-N-C SACs–luminol ECL sensor for antioxidant capacity measurement was developed with a good linear range from 0.8 μm to 1.0 mm of Trolox.  相似文献   

17.
石明娟  崔华 《化学学报》2007,65(22):2555-2562
系统研究了不同pH下的NaHCO3-Na2CO3和NaOH缓冲介质中, 36种苯酚和苯胺类化合物对鲁米诺电致化学发光(Electrochemiluminescence, ECL)体系的影响. 发现苯酚和苯胺类化合物的抑制和增强作用与化合物的结构、氧化电位和介质的pH有直接的关系: 具有较高氧化电位的苯酚和苯胺类化合物对鲁米诺的ECL没有影响; 而具有较低的氧化电位、苯环上有两个处于对位的-OH(或-NH2)或苯环上有多个相邻的-OH的化合物, 在较低的pH下有增强作用, 在较高的pH下具有抑制作用; 其它的化合物则呈现抑制作用, 抑制作用的大小与化合物的结构有关. 通过研究化合物的氧化半峰电位、ECL光谱、荧光光谱等, 提出了增强和抑制作用的可能机理: 各种有机物的电氧化产物如醌、酮及具有醌、酮结构的聚合物等能够淬灭激发态3-氨基邻苯二甲酸根阴离子(3-AP2-*)的发射, 导致了鲁米诺的ECL的降低; 同时, 反应过程中生成的半醌自由基中间体或 会促进鲁米诺的发光反应, 呈现增强作用.  相似文献   

18.
Electrochemiluminescence (ECL) and electrochemistry are reported for a heterometallic soft salt, [Ru(dtbubpy)3][Ir(ppy)2(CN)2]2 ( [Ir][Ru][Ir] ), consisting of a 2:1 ratio of complementary charged Ru and Ir complexes possessing two different emission colors. The [Ru]2+ and [Ir]? moieties in the [Ir][Ru][Ir] greatly reduce the energy required to produce ECL. Though ECL intensity in the annihilation path was enhanced 18× relative to that of [Ru(bpy)3]2+, ECL in the co‐reactant path with tri‐n‐propylamine was enhanced a further 4×. Spooling spectroscopy gives insight into ECL mechanisms: the unique light emission at 634 nm is due to the [Ru]2+* excited state and no [Ir]?* was generated in either route. Overall, the soft salt system is anticipated to be attractive and suitable for the development of efficient and low‐energy‐cost ECL detection systems.  相似文献   

19.
Chemiluminescence emission intensity is modulated by modulating the potential of a working electrode which is used to generate a key species in the electrogenerated Chemiluminescence (ECL) reaction. The emission is monitored synchronously using a lock-in amplifier. The reactions used in the characterization are luminol with hydrogen peroxide and tris(2,2-bipyridyl)ruthenium (II) (or Ru(bpy) 3 2+ ) with oxalate. Modulation widths of ± 50 mV yield maximum signals for luminol when centered at 0.45 V (vs Ag/AgCl) and for Ru(bpy) 3 2+ when centered at 1.05 V. The resulting signal decreases with increasing modulation frequency and shows that luminol/H2O2 is a faster ECL system than Ru(bpy) 3 2+ /oxalate. Working curves for luminol and for oxalate have essentially the same linear range and slope with the modulated potential approach as with a DC electrode potential. This approach provides capability for differentiating the analytical signal from constant background emission or stray light.  相似文献   

20.
In the present study, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol cathodic ECL was fabricated by using Au nanoparticles and Pt nanoparticles (nano-AuPt) electrodeposited on graphene–carbon nanotubes nanocomposite as platform for the detection of carcinoembryonic antigen (CEA). For this introduced immunosensor, graphene (GR) and single wall carbon nanotubes (CNTs) dispersed in chitosan (Chi-GR-CNTs) were firstly decorated on the bare gold electrode (GE) surface. Then nano-AuPt were electrodeposited (DpAu-Pt) on the Chi-GR-CNTs modified electrode. Subsequently, glucose oxidase (GOD) was employed to block the non-specific sites of electrode surface. When glucose was present in the working buffer solution, GOD immediately catalyzed the oxidation of glucose to in situ generate hydrogen peroxide (H2O2), which could subsequently promote the oxidation of luminol with an amplified cathodic ECL signal. The proposed immunosensor was performed at low potential (−0.1 to 0.4 V) and low concentration of luminol. The CEA was determined in the range of 0.1 pg mL−1 to 40 ng mL−1 with a limit of detection down to 0.03 pg mL−1 (S N−1 = 3). Moreover, with excellent sensitivity, selectivity, stability and simplicity, the as-proposed luminol-based ECL immunosensor provided great potential in clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号