首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between various modified semiconductor nanocrystal, cadmium sulfide quantum dots (CdS QDs) and bovine serum albumin (BSA) and lysozyme (LZY) were investigated. CdS QDs capped with mercaptoethanol (MPA), l-cysteine (Lcys) and glutathione (GSH) were synthesized in aqueous solution and characterized by UV-vis and fluorescence spectrum. Circular dichroism (CD) and fluorescence spectrum were used to detect the interactions between as-prepared CdS QDs and protein molecules. The interaction parameters, including binding constant (Kb), binding site number (n) and quench constant (Kq), were determined by fluorescence spectrum. The changes of secondary structures of the proteins were detected by CD. The results imply that CdS QDs modified by different agents have dramatically different binding strength with protein molecules. The results obtained here analyze the biosafety of CdS QDs in terms of the biological behavior of biomolecules and could serve as basis for the application of CdS QDs to bioscience.  相似文献   

2.
Energy transfer has been employed in third‐generation solar cells for the conversion of light into electrical energy. Long‐range nonradiative energy transfer from semiconductor quantum dots (QDs) to fluorophores has been demonstrated by using CdS QDs and thiophene?BODIPY (boron dipyrromethene, abbreviated as TG2). TG2 shows a broad photoluminescence (PL) spectrum, which varies with concentration. At very low concentrations, monomeric units are present; then, upon increasing the concentration, these monomers form a mixed (J‐/H‐)aggregated state. Energy transfer between the CdS QDs and TG2 was confirmed by separately investigating the interactions between CdS and the monomer of TG2 and between CdS and the aggregated states of TG2. Size‐dependent PL quenching confirmed that nonradiative Förster resonance energy transfer (FRET) from photoexcited CdS QDs to the J‐aggregate state of TG2 was the major energy‐relaxation channel, which occurred on the timescale of hundreds of fs. These results have broad applications in the field of light harvesting based on the assembly of molecular aggregates.  相似文献   

3.
采用水相法合成了谷胱甘肽(GSH)修饰的CdTe/CdS量子点(GSH-CdTe/CdS QDs). 透射电子显微镜表征结果表明, GSH-CdTe/CdS QDs的粒径分布均匀, 分散性好. 在Tris-HCl(pH=7.6)缓冲液中, 由于静电引力作用, 带正电的盐酸洛美沙星(LMFH)-Cu(Ⅱ)配合物[LMFH-Cu(Ⅱ)]吸附到带负电的GSH-CdTe/CdS QDs表面形成基态复合物, 导致GSH-CdTe/CdS QDs的荧光猝灭. 随后, 向GSH-CdTe/CdS QDs-LMFH-Cu(Ⅱ)配合物体系中加入鲱鱼精DNA(hsDNA), hsDNA可诱导LMFH-Cu(Ⅱ)配合物从GSH-CdTe/CdS QDs表面脱落而嵌入到hsDNA的双螺旋结构中, 使GSH-CdTe/CdS QDs的荧光恢复. 通过对GSH-CdTe/CdS QDs荧光的可逆调控, 利用荧光光谱、 紫外-可见吸收光谱和共振瑞利散射光谱研究了hsDNA与LMFH-Cu(Ⅱ)配合物的相互作用. 通过对比GSH-CdTe/CdS QDs与LMFH相互作用的光谱性质, 讨论了GSH-CdTe/CdS QDs-LMFH-Cu(Ⅱ)-hsDNA的相互作用机理, 模拟了作用过程, 从而建立了一种研究氟诺喹酮类药物的金属配合物与核酸相互作用机制的光谱方法.  相似文献   

4.
A series of highly efficient semiconductor nanocrystal (NC) photocatalysts have been synthesized by growing wurtzite‐ZnO tetrahedrons around pre‐formed CdS, CdSe, and CdTe quantum dots (QDs). The resulting contact between two small but high‐quality crystals creates novel CdX/ZnO heterostructured semiconductor nanocrystals (HSNCs) with extensive type‐II nanojunctions that exhibit more efficient photocatalytic decomposition of aqueous organic molecules under UV irradiation. Catalytic testing and characterization indicate that catalytic activity increases as a result of a combination of both the intrinsic chemistry of the chalcogenide anions and the heterojunction structure. Atomic probe tomography (APT) is employed for the first time to probe the spatial characteristics of the nanojunction between cadmium chalcogenide and ZnO crystalline phases, which reveals various degrees of ion exchange between the two crystals to relax large lattice mismatches. In the most extreme case, total encapsulation of CdTe by ZnO as a result of interfacial alloying is observed, with the expected advantage of facilitating hole transport for enhanced exciton separation during catalysis.  相似文献   

5.
A series of highly efficient semiconductor nanocrystal (NC) photocatalysts have been synthesized by growing wurtzite‐ZnO tetrahedrons around pre‐formed CdS, CdSe, and CdTe quantum dots (QDs). The resulting contact between two small but high‐quality crystals creates novel CdX/ZnO heterostructured semiconductor nanocrystals (HSNCs) with extensive type‐II nanojunctions that exhibit more efficient photocatalytic decomposition of aqueous organic molecules under UV irradiation. Catalytic testing and characterization indicate that catalytic activity increases as a result of a combination of both the intrinsic chemistry of the chalcogenide anions and the heterojunction structure. Atomic probe tomography (APT) is employed for the first time to probe the spatial characteristics of the nanojunction between cadmium chalcogenide and ZnO crystalline phases, which reveals various degrees of ion exchange between the two crystals to relax large lattice mismatches. In the most extreme case, total encapsulation of CdTe by ZnO as a result of interfacial alloying is observed, with the expected advantage of facilitating hole transport for enhanced exciton separation during catalysis.  相似文献   

6.
Near infrared (NIR) CdHgTe/CdS quantum dots (QDs) were successfully prepared by a green synthetic route. The characteristics such as morphology, size, spectra, stability and toxicity were investigated in detail. The fluorescence wavelength of CdHgTe/CdS QDs could be adjusted to the NIR range (812nm), which made the in vivo NIR imaging possible. The in vivo dynamic biodistribution of CdHgTe/CdS QDs in a mouse model was monitored by an NIR imaging system. Results indicated that CdHgTe/CdS QDs with a diameter of about 5.8nm targeted to spinal column effectively. Further imaging of the dissected spine disclosed that QDs targeted to vertebra rather than spinal cord. The high fluorescence intensity together with targeting effect makes CdHgTe/CdS QDs particular candidates for imaging purposes in experimental animal models of vertebral injury.  相似文献   

7.
A novel chemiluminescence (CL) performance of CdTe/CdS/ZnS quantum dots (QDs) with periodate (KIO4) was studied. Effects of concentration and pH on the CL system were investigated. Electron spin resonance (ESR) and the effects of radical scavenger analysis were employed for identification of intermediate species. The CL spectra for this system showed only one maximum emission peak centered around 620 nm, which was similar with photoluminescence (PL) spectra of CdTe/CdS/ZnS QDs. The CL of CdTe/CdS/ZnS QDs was induced by direct chemical oxidation and the possible mechanism could be explained by radiative recombination of injected holes and electrons. This investigation not only provided new sight into the optical characteristics of CdTe/CdS/ZnS QDs, but also broadened their potential optical utilizations.  相似文献   

8.
Synthesis of hybrid CdS-Au colloidal nanostructures   总被引:1,自引:0,他引:1  
We explore the growth mechanism of gold nanocrystals onto preformed cadmium sulfide nanorods to form hybrid metal nanocrystal/semiconductor nanorod colloids. By manipulating the growth conditions, it is possible to obtain nanostructures exhibiting Au nanocrystal growth at only one nanorod tip, at both tips, or at multiple locations along the nanorod surface. Under anaerobic conditions, Au growth occurs only at one tip of the nanorods, producing asymmetric structures. In contrast, the presence of oxygen and trace amounts of water during the reaction promotes etching of the nanorod surface, providing additional sites for metal deposition. Three growth stages are observed when Au growth is performed under air: (1) Au nanocrystal formation at both nanorod tips, (2) growth onto defect sites on the nanorod surface, and finally (3) a ripening process in which one nanocrystal tip grows at the expense of the other particles present on the nanorod. Analysis of the hybrid nanostructures by high-resolution TEM shows that there is no preferred orientation between the Au nanocrystal and the CdS nanorod, indicating that growth is nonepitaxial. The optical signatures of the nanocrystals and the nanorods (i.e., the surface plasmon and first exciton transition peaks, respectively) are spectrally distinct, allowing the different stages of the growth process to be easily monitored. The initial CdS nanorods exhibit band gap and trap state emission, both of which are quenched during Au growth.  相似文献   

9.
We have developed an analytical method to detect adenosine-5′-triphosphate (ATP) and alkaline phosphatase (ALP) based on the generation of CdS quantum dots (QDs). We demonstrated that Cd2+ cation reacts with S2− anion to generate fluorescent CdS QDs in the presence of some certain amount of ATP. With increase in the ATP concentration, the fluorescence intensity of CdS QDs was also enhanced. ATP can be converted into adenosine by the dephosphorylation of ALP, so that the generation of CdS QDs would be inhibited in the presence of ALP. Therefore, this novel analysis system could be applied to assay ATP and ALP based on the growth of fluorescent CdS QDs.  相似文献   

10.
This study demonstrates how luminescent semiconductor nanocrystals (quantum dots or QDs) can be dispersed uniformly in a poly(dimethylsiloxane) (PDMS) matrix by polymerizing a mixture of the prepolymer oligomers and the nanocrystals with a relatively large concentration of crosslinking molecules. A microfluidic device is used to fabricate PDMS microbeads embedded with the QDs by using flow focusing to first form monodisperse droplets of the prepolymer/crosslinker/nanocrystal mixture in a continuous aqueous phase. The droplets are subsequently collected, and heated to polymerize them into solid microbead composites. The degree of aggregation of the nanocrystals in the matrix is studied by measuring the nonradiative resonance energy transfer (RET) between the nanocrystals. For this purpose, two quantum dots are used with maxima in their luminescence emission spectrum at 560 nm and 620 nm. When the nanocrystals are within the F?rster radius (approximately 10 nm) of each other, exciton energy cascades from the QDs which emit at the shorter wavelength to the QDs which emit at the longer wavelength. This energy transfer is quantified, for two concentration ratios of the prepolmer to the crosslinker, by measuring the deviation of the microbead luminescence spectrum from a reference spectrum obtained by dispersing the QD mixture in a solvent (toluene) in which the nanocrystals do not aggregate. For a low concentration of crosslinking molecules relative to the prepolymer (5:1 by weight prepolymer to crosslinker), strong RET is observed as the emission of the 620 nm QDs is increased and the 560 nm QDs is decreased relative to the reference. In the emission spectrum for a higher concentration of crosslinkers (2:1 by weight prepolymer to crosslinker), the resonance energy transfer is less relative to the case of the low concentration of crosslinkers, and the spectrum more closely resembles the reference. This result indicates that the increase in the crosslinker concentration has reduced the nanocrystal aggregation in the cured polymer. The use of crosslinking can serve as a general paradigm for forming, from a prepolymer/nanoparticle mixture, a composite in which the particles are not aggregated. Under the usual conditions the entropic cost to a linearly growing polymer chain of surrounding nanoparticles forces them to aggregate; crosslinking kinetically entraps the particles and circumvents this aggregation driving force. The QD/polymer composite microbeads fabricated in this study find applications in bead-based platforms for high-throughput, multiplexed screening, where the emission spectrum of the QD luminescence can be used as a spectral barcode to label the beads. For microbeads in which the nanocrystals are uniformly dispersed, this barcode is undistorted by energy transfer, and is easily read.  相似文献   

11.
The influence of temperature and applied magnetic fields on photoluminescence (PL) emission and electronic energy transfer (ET) of both isolated and aggregated CdSe nanocrystals was investigated. Following 400-nm excitation, temperature-dependent, intensity-integrated and energy-resolved PL measurements were used to quantify the emission wavelength and amplitude of isolated CdSe nanocrystals. The results indicated an approximately three-fold increase in PL intensity upon decreasing the temperature from 300 K to 6 K; this was attributed to a reduction of charge carrier access to nanocrystal surface trap states and suppression of thermal loss channels. Temperature-dependent PL measurements of aggregated CdSe nanocrystals, which included both energy-donating and -accepting particles, were analyzed using a modified version of F?rster theory. Temperature-dependent ET efficiency increased from 0.55 to 0.75 upon decreasing the sample temperature from 225 K to 6 K, and the ET data contained the same trend observed for the PL of isolated nanoclusters. The application of magnetic fields to increase nanocrystal ET efficiency was studied using magneto-photoluminescence measurements recorded at a sample temperature of 1.6 K. We demonstrated that the exciton fine structure population of the donor was varied using applied magnetic fields, which in turn dictated the PL yield and the resultant ET efficiency of the CdSe nanocrystal aggregate system. The experimental data indicated an ET efficiency enhancement of approximately 7%, which was limited by the random orientation of the spherical nanocrystals in the thin film.  相似文献   

12.
Strong luminescence CdS quantum dots (QDs) have been prepared and modified with l-cysteine by a facile seeds-assistant technique in water. They are water-soluble and highly stable in aqueous solution. CdS QDs evaluated as a luminescence probe for heavy and transition metal (HTM) ions in aqueous solution was systematically studied. Five HTM ions such as silver(I) ion, copper(II) ion, mercury(II) ion, cobalt(II) ion, and nickel(II) ion significantly influence the photophysics of the emission from the functionalized CdS QDs. Experiment results showed that the fluorescence emission from CdS QDs was enhanced significantly by silver ion without any spectral shift, while several other bivalent HTM ions, such as Hg(2+), Cu(2+), Co(2+), and Ni(2+), exhibited effective optical quenching effect on QDs. Moreover, an obvious red-shift of emission band was observed in the quenching of CdS QDs for Hg(2+) and Cu(2+) ions. Under the optimal conditions, the response was linearly proportional to the concentration of Ag(+) ion ranging from 1.25 x 10(-7) to 5.0 x 10(-6)molL(-1) with a detection limit of 2.0 x 10(-8)molL(-1). The concentration dependence of the quenching effect on functionalized QDs for the other four HTM ions could be well described by typical Stern-Volmer equation, with the linear response of CdS QDs emission proportional to the concentration ranging from 1.50 x 10(-8) to 7.50 x 10(-7)molL(-1) for Hg(2+) ion, 3.0 x 10(-7) to 1.0 x 10(-5)molL(-1) for Ni(2+) ion, 4.59 x 10(-8) to 2.295 x 10(-6)molL(-1) for Cu(2+) ion, and 1.20 x 10(-7) to 6.0 x 10(-6)molL(-1) Co(2+) ion, respectively. Based on the distinct optical properties of CdS QDs system with the five HTM ions, and the relatively wide linear range and rapid response to HTM ions, CdS QDs can be developed as a potential identified luminescence probe for familiar HTM ions detection in aqueous solution.  相似文献   

13.
High-quality CdS and Cu(7)S(4) quantum dots (QDs) were synthesized with N,N-dibutylthiourea (DBTU) as an organic sulfur source. In this method, nucleation and growth reactions were controlled simply by the heating rate of the reaction. The mild oxidation conditions gave monodisperse CdS QDs exhibiting pure band-edge emission with relatively high photoluminescence quantum yield. During the synthesis of Cu(7)S(4) QDs, the addition of dodecanethiol to the reaction system controlled the reaction rate to give monodisperse spherical or disk-shaped QDs. A hundred-gram scale of copper precursor could be used to generate the high-quality Cu(7)S(4) QDs, indicating that an industrial-scale reaction is achievable with our method. As observed in anisotropic noble-metal nanocrystals, larger disk-shaped Cu(7)S(4) QDs showed lower localized-surface-plasmon resonance energy in the near-infrared region. The disk-shaped Cu(7)S(4) QDs could be used effectively as templates to form cation-exchanged monodisperse disk-shaped CdS QDs.  相似文献   

14.
Lai S  Chang X  Mao J  Zhai Y  Lian N  Zheng H 《Annali di chimica》2007,97(1-2):109-121
CdS quantum dots (QDs) modified with bismuthiol II potassium salt is prepared in one step. Based on the characteristic fluorescence enhancement of CdS QDs at 480 nm by silver ions, simultaneously, a red shift of fluorescence emission bands of CdS QDs from 460 to 480 nm is observed. A simple, rapid, sensitive and specific detection method for silver ion is proposed. Under optimum conditions, the fluorescence intensity of CdS QDs was linearly proportional to silver ion concentration from 0.01 to 5.0 micromol L(-1) with a detection limit of 1.6 nmol L(-1). In comparison with single organic fluorophores, functionalized CdS quantum dots are brighter, more stable against photobleaching and do not suffer from blinking. Furthermore, the proposed method shows higher sensitivity and selectivity. A possible fluorescence enhancement mechanism is also studied.  相似文献   

15.
A low-cost, green, and reproducibly non-injection one-pot synthesis of high-quality CdS quantum dots (QDs) is reported. The synthesis was performed in the open air by mixing precursors cadmium stearate and S powder into a new solvent N-oleoylmorpholine. An overlapped nucleation-growth stage followed by a dominated growth stage was observed. The resulting QDs exhibited well-resolved absorption fine substructure and a dominant band-edge emission with a narrow size distribution (the full width at half maximum (fwhm) was only 22-24nm). The maximum photoluminescence (PL) quantum yield (QY) was as high as 46.5%. Highly monodispersed CdS QDs with tunable sizes and similar PL fwhm and QYs could also be obtained from the CdS QDs in a large-scale synthesis. The high-resolution transmission electron microscopy (HRTEM) images and powder X-ray diffraction (XRD) pattern suggested that the as-prepared QDs with high crystallinity had a cubic structure. A significant PL improvement and a continuous QY increase for the CdS QDs were observed during a long storage time in air and in a glovebox under room temperature. A slow surface reconstruction was proposed to be the cause for the PL enhancement of CdS QDs.  相似文献   

16.
丛日敏  罗运军  靳玉娟 《化学学报》2007,65(21):2479-2483
为了研究温度对聚酰胺-胺(PAMAM)树形分子的模板法制备硫化镉(CdS)量子点的影响, 以4.5代(G4.5, 64个甲酯端基)PAMAM树形分子为模板, 在-10~30 ℃的温度范围内制备了分散良好的CdS量子点. 用透射电子显微镜(TEM)表征了CdS量子点的形貌、尺寸; 用紫外-可见光谱(UV-Vis)和光致发光光谱(PL)表征了CdS量子点的光学性能. 发现在相同条件下, 制备温度从-10 ℃升高到30 ℃, CdS量子点粒径从1.8 nm增大到3.4 nm, 其中在10 ℃时制备的量子点的尺寸分布最窄; CdS量子点的吸收和发射光谱均随温度增大而红移, 其中10 ℃时制备的量子点的室温光致发光效率最高. 这表明制备温度决定了树形分子的配位基团与Cd2+的分离速度, 并影响了CdS量子点的成核和生长过程, 从而最终决定了CdS量子点的尺寸及尺寸分布、光致发光颜色和发光效率.  相似文献   

17.
We present herein a facile strategy for fabrication of fluorescent-ultrahydrophobic bifunctional ligand-free CdS quantum dots (QDs) using cadmium acetate, sodium sulfide as starting materials, and ethanol as the solvent. The as-prepared CdS QDs without ligands exhibit good photochemical stability and photoluminescence (PL) in comparison with the previously reported aqueous CdS QDs. The effects of various experimental variables, including Cd/S molar ratio, reaction time, and reaction temperature on the optical properties of the obtained CdS QDs have been systematically investigated. Subsquently, dodecanethiol was introduced to modify these CdS QDs, further conferring them with superhydrophobic property, along with good compatibility with polymers. The features and structures of the as-prepared QDs and their hybrids on UV–Vis, PL spectroscopy, Fourier transform infrared, transmission electron microscope, X-ray diffraction, and contact angle have been disscussed.  相似文献   

18.
The interaction between human adult hemoglobin (Hb) and bare CdS quantum dots (QDs) was investigated by fluorescence, synchronous fluorescence, circular dichroism (CD), and Raman spectroscopic techniques under physiological pH 7.43. The intrinsic fluorescence of Hb is statically quenched by CdS QDs. The quenching obeys the Stern-Volmer equation, with an order of magnitude of binding constant (K) of 10(7). The electrostatic adsorption of Hb on the cationic CdS QDs surface is energetically favorable (DeltaS(0)=70.22 Jmol(-1)K(-1), DeltaH(0)=-23.11 kJmol(-1)). The red shift of synchronous fluorescence spectra revealed that the microenvironments of tryptophan and tyrosine residues at the alpha(1)beta(2) interface of Hb are disturbed by CdS QDs, which are induced from hydrophobic cavities to a more exposed or hydrophilic surrounding. The secondary structure of the adsorbed Hb has a loose or extended conformation for which the content of alpha-helix has decreased from 72.5 to 60.8%. Moreover, Raman spectra results indicated that the sulfur atoms of the cysteine residues form direct chemical bonds on the surface of the CdS QDs. The binding does not significantly affect the spin state of the heme iron, and deoxidation is not expected to take place on the coated oxyhemoglobin. The change of orientation of heme vinyl groups was also detected.  相似文献   

19.
A new effect, called attenuated quantum confinement, is described using a theoretical approach, based on the effective mass approximation. It assumes that the exciton, generated in a semiconductor nanocrystal, can penetrate the medium outside the crystal boundary. An equation is derived for the energy of attenuated quantum confinement depending on the penetration depth and mass of exciton outside the crystalline core. It gives lower absorption energy, which is observed experimentally for very small nanocrystals, compared to that predicted by usual quantum confinement. The penetration depth calculated for compound semiconductors is found to be of the same magnitude as that of the thickness of organic capping layer for CdS, CdSe, PbS and InAs nanoparticles. Our finding can also explain other practical processes of charge generation and transportation in a matrix with embedded nanocrystals.  相似文献   

20.
以聚酰胺-胺树形分子为模板制备了分散好、尺寸均匀的CdS量子点,并用分光光度滴定法研究了Cd2+、Zn2+、Pb2+、Cu2+、Mn2+几种金属离子对其光致发光性能的影响。发现不同离子对CdS量子点的发光性能影响不同:Cd2+和Zn2+使量子点荧光增强,Pb2+、Cu2+和Mn2+使其荧光有不同程度淬灭。这归因于金属离子对CdS量子点表面的修饰作用。Cd2+能减少由S2-悬键构成的非辐射复合中心,增强树形分子对量子点表面缺陷的钝化作用,并能在量子点周围形成类肖特基能垒,从而显著增大CdS量子点的光致发光效率。由于ZnS与CdS的晶格参数非常接近,Zn2+能起到与Cd2+类似的作用,使CdS量子点的发光效率大大增强。Pb2+和Cu2+能取代Cd2+在CdS量子点表面生成窄带隙的壳层,对其发光有很强的淬灭作用。由于块体PbS的带隙比块体CuS窄,故Pb2+的淬灭能力强于Cu2+。Mn2+能破坏Cd2+与PAMAM树形分子的配位键,降低树形分子对CdS量子点表面缺陷的钝化作用,且其本身在量子点表面构成了新的荧光淬灭中心,但Mn2+也能形成较弱的类肖特基能垒,故对量子点的发光淬灭作用较弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号