首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove that there exist arbitrarily small positive real numbers ε such that every integral power ${(1 + \varepsilon)^n}$ is at a distance greater than ${2^{-17} \varepsilon |\log \varepsilon |^{-1}}$ to the set of rational integers. This is sharp up to the factor ${2^{-17} |\log\varepsilon |^{-1}}$ . We also establish that the set of real numbers α > 1 such that the sequence of fractional parts ${(\{\alpha^n\})_{n\ge 1}}$ is not dense modulo 1 has full Hausdorff dimension.  相似文献   

2.
Let $\{\mu _{t}^{(i)}\}_{t\ge 0}$ ( $i=1,2$ ) be continuous convolution semigroups (c.c.s.) of probability measures on $\mathbf{Aff(1)}$ (the affine group on the real line). Suppose that $\mu _{1}^{(1)}=\mu _{1}^{(2)}$ . Assume furthermore that $\{\mu _{t}^{(1)}\}_{t\ge 0}$ is a Gaussian c.c.s. (in the sense that its generating distribution is a sum of a primitive distribution and a second-order differential operator). Then $\mu _{t}^{(1)}=\mu _{t}^{(2)}$ for all $t\ge 0$ . We end up with a possible application in mathematical finance.  相似文献   

3.
We show that every $n$ -point tree metric admits a $(1+\varepsilon )$ -embedding into $\ell _1^{C(\varepsilon ) \log n}$ , for every $\varepsilon > 0$ , where $C(\varepsilon ) \le O\big ((\frac{1}{\varepsilon })^4 \log \frac{1}{\varepsilon })\big )$ . This matches the natural volume lower bound up to a factor depending only on $\varepsilon $ . Previously, it was unknown whether even complete binary trees on $n$ nodes could be embedded in $\ell _1^{O(\log n)}$ with $O(1)$ distortion. For complete $d$ -ary trees, our construction achieves $C(\varepsilon ) \le O\big (\frac{1}{\varepsilon ^2}\big )$ .  相似文献   

4.
Let $\{\varphi _n(z)\}_{n\ge 0}$ be a sequence of inner functions satisfying that $\zeta _n(z):=\varphi _n(z)/\varphi _{n+1}(z)\in H^\infty (z)$ for every $n\ge 0$ and $\{\varphi _n(z)\}_{n\ge 0}$ has no nonconstant common inner divisors. Associated with it, we have a Rudin type invariant subspace $\mathcal{M }$ of $H^2(\mathbb{D }^2)$ . The ranks of $\mathcal{M }\ominus w\mathcal{M }$ for $\mathcal{F }_z$ and $\mathcal{F }^*_z$ respectively are determined, where $\mathcal{F }_z$ is the fringe operator on $\mathcal{M }\ominus w\mathcal{M }$ . Let $\mathcal{N }= H^2(\mathbb{D }^2)\ominus \mathcal{M }$ . It is also proved that the rank of $\mathcal{M }\ominus w\mathcal{M }$ for $\mathcal{F }^*_z$ equals to the rank of $\mathcal{N }$ for $T^*_z$ and $T^*_w$ .  相似文献   

5.
6.
We consider the problem $$\begin{aligned} -\Delta u=\varepsilon ^{2}e^{u}- \frac{1}{|\Omega |}\int _\Omega \varepsilon ^{2} e^{u}+ {4\pi N\over |\Omega |} - 4 \pi N\delta _p, \quad \text{ in} {\Omega }, \quad \int _\Omega u=0 \end{aligned}$$ in a flat two-torus $\Omega $ with periodic boundary conditions, where $\varepsilon >0,\,|\Omega |$ is the area of the $\Omega $ , $N>0$ and $\delta _p$ is a Dirac mass at $p\in \Omega $ . We prove that if $1\le m<N+1$ then there exists a family of solutions $\{u_\varepsilon \}_{\varepsilon }$ such that $\varepsilon ^{2}e^{u_\varepsilon }\rightharpoonup 8\pi \sum _{i=1}^m\delta _{q_i}$ as $\varepsilon \rightarrow 0$ in measure sense for some different points $q_{1}, \ldots , q_{m}$ . Furthermore, points $q_i$ , $i=1,\dots ,m$ are different from $p$ .  相似文献   

7.
We study the nonlinear fractional equation $(-\Delta )^su=f(u)$ in $\mathbb R ^n,$ for all fractions $0<s<1$ and all nonlinearities $f$ . For every fractional power $s\in (0,1)$ , we obtain sharp energy estimates for bounded global minimizers and for bounded monotone solutions. They are sharp since they are optimal for solutions depending only on one Euclidian variable. As a consequence, we deduce the one-dimensional symmetry of bounded global minimizers and of bounded monotone solutions in dimension $n=3$ whenever $1/2\le s<1$ . This result is the analogue of a conjecture of De Giorgi on one-dimensional symmetry for the classical equation $-\Delta u=f(u)$ in $\mathbb R ^n$ . It remains open for $n=3$ and $s<1/2$ , and also for $n\ge 4$ and all $s$ .  相似文献   

8.
We show the existence of sets with $n$ points ( $n\ge 4$ ) for which every convex decomposition contains more than $\frac{35}{32}n-\frac{3}{2}$ polygons, which refutes the conjecture that for every set of $n$ points there is a convex decomposition with at most $n+C$ polygons. For sets having exactly three extreme points we show that more than $n+\sqrt{2(n-3)}-4$ polygons may be necessary to form a convex decomposition.  相似文献   

9.
We present a unified approach to a couple of central limit theorems for the radial behavior of radial random walks on hyperbolic spaces as well as for time-homogeneous Markov chains on $[0,\infty [$ whose transition probabilities are defined in terms of Jacobi convolutions. The proofs of all central limit theorems are based on corresponding limit results for the associated Jacobi functions $\varphi _{\lambda }^{(\alpha ,\beta )}$ . In particular, we consider the limit $\alpha \rightarrow \infty $ , the limit $\varphi _{i\rho -n\lambda }^{(\alpha ,\beta )}(t/n)$ for $n\rightarrow \infty $ , and the behavior of the Jacobi function $\varphi _{i\rho -\lambda }^{(\alpha ,\beta )}(t)$ for small $\lambda $ . The proofs of all these limit results are based on the known Laplace integral representation for Jacobi functions. Parts of the results are known, other improve known ones, and other are new.  相似文献   

10.
In this paper we describe the actions of the operator $S_\mathbb{D }$ or its adjoint $S_\mathbb{D }^*$ on the poly-Bergman spaces of the unit disk $\mathbb{D }.$ Let $k$ and $j$ be positive integers. We prove that $(S_\mathbb{D })^{j}$ is an isometric isomorphism between the true poly-Bergman subspace $\mathcal{A }_{(k)}^2(\mathbb{D })\ominus N_{(k),j}$ onto the true poly-Bergman space $\mathcal{A }_{(j+k)}^2(\mathbb{D }),$ where the linear space $N_{(k),j}$ have finite dimension $j.$ The action of $(S_\mathbb{D })^{j-1}$ on the canonical Hilbert base for the Bergman subspace $\mathcal{A }^2(\mathbb{D })\ominus \mathcal{P }_{j-1},$ gives a Hilbert base $\{ \phi _{ j , k } \}_{ k }$ for $\mathcal{A }_{(j)}^2(\mathbb{D }).$ It is shown that $\{ \phi _{ j , k } \}_{ j, k }$ is a Hilbert base for $L^2(\mathbb{D },d A)$ such that whenever $j$ and $k$ remain constant we obtain a Hilbert base for the true poly-Bergman space $\mathcal{A }_{(j)}^2(\mathbb{D })$ and $\mathcal{A }_{(-k)}^2(\mathbb{D }),$ respectively. The functions $\phi _{ j , k }$ are polynomials in $z$ and $\overline{z}$ and are explicitly given in terms of the $(2,1)$ -hypergeometric polynomials. We prove explicit representations for the true poly-Bergman kernels and the Koshelev representation for the poly-Bergman kernels of $\mathbb{D }.$ The action of $S_\Pi $ on the true poly-Bergman spaces of the upper half-plane $\Pi $ allows one to introduce Hilbert bases for the true poly-Bergman spaces, and to give explicit representations of the true poly-Bergman and poly-Bergman kernels.  相似文献   

11.
We prove some Liouville type results for stable solutions to the biharmonic problem $\Delta ^2 u= u^q, \,u>0$ in $\mathbb{R }^n$ where $1 < q < \infty $ . For example, for $n \ge 5$ , we show that there are no stable classical solution in $\mathbb{R }^n$ when $\frac{n+4}{n-4} < q \le \left(\frac{n-8}{n}\right)_+^{-1}$ .  相似文献   

12.
We study the following two problems: (1) Given $n\ge 2$ and $0\le \alpha \le 180^\circ $ , how large Hausdorff dimension can a compact set $A\subset \mathbb{R }^n$ have if $A$ does not contain three points that form an angle $\alpha $ ? (2) Given $\alpha $ and $\delta $ , how large Hausdorff dimension can a subset $A$ of a Euclidean space have if $A$ does not contain three points that form an angle in the $\delta $ -neighborhood of $\alpha $ ? An interesting phenomenon is that different angles show different behaviour in the above problems. Apart from the clearly special extreme angles $0$ and $180^\circ $ , the angles $60^\circ , 90^\circ $ and $120^\circ $ also play special role in problem (2): the maximal dimension is smaller for these angles than for the other angles. In problem (1) the angle $90^\circ $ seems to behave differently from other angles.  相似文献   

13.
We prove that, for every $\alpha > -1$ , the pull-back measure $\varphi ({\mathcal A }_\alpha )$ of the measure $d{\mathcal A }_\alpha (z) = (\alpha + 1) (1 - |z|^2)^\alpha \, d{\mathcal A } (z)$ , where ${\mathcal A }$ is the normalized area measure on the unit disk $\mathbb D $ , by every analytic self-map $\varphi :\mathbb D \rightarrow \mathbb D $ is not only an $(\alpha \,{+}\, 2)$ -Carleson measure, but that the measure of the Carleson windows of size $\varepsilon h$ is controlled by $\varepsilon ^{\alpha + 2}$ times the measure of the corresponding window of size $h$ . This means that the property of being an $(\alpha + 2)$ -Carleson measure is true at all infinitesimal scales. We give an application by characterizing the compactness of composition operators on weighted Bergman–Orlicz spaces.  相似文献   

14.
For bases $\mathbf{b}=(b_1, \ldots , b_s)$ of $s$ not necessarily distinct integers $b_i\ge 2$ , we prove a version of the inequality of Erdös–Turán–Koksma for the hybrid function system composed of the Walsh functions in base $\mathbf{b}^{(1)}=(b_1, \ldots , b_{s_1})$ and, as second component, the $\mathbf{b}^{(2)}$ -adic functions, $\mathbf{b}^{(2)}=(b_{s_1+1}, \ldots , b_s)$ , with $s=s_1+s_2$ , $s_1$ and $s_2$ not both equal to 0. Further, we point out why this choice of a hybrid function system covers all possible cases of sequences that employ addition of digit vectors as their main construction principle.  相似文献   

15.
We analyse sequences of discs conformally immersed in $ \mathbb{R }^ n$ with energy $ \int _{ D} |A_k |^ 2 \le \gamma _n$ , where $ \gamma _n = 8\pi $ if $ n=3$ and $ \gamma _n = 4 \pi $ when $n\ge 4$ . We show that if such sequences do not weakly converge to a conformal immersion, then by a sequence of dilations we obtain a complete minimal surface with bounded total curvature, either Enneper’s minimal surface if $ n=3$ or Chen’s minimal graph if $ n \ge 4$ . In the papers, (Kuwert and Li, Comm Anal Geom 20(2), 313–340, 2012; Rivière, Adv Calculus Variations 6(1), 1–31, 2013) it was shown that if a sequence of immersed tori diverges in moduli space then $\liminf _ {k\rightarrow \infty } \mathcal W ( f_k )\ge 8\pi $ . We apply the above analysis to show that in $ \mathbb{R }^3$ if the sequence diverges so that $ \lim _{ k \rightarrow \infty } \mathcal W (f_k) =8\pi $ then there exists a sequence of Möbius transforms $ \sigma _{k}$ such that $ \sigma _k\circ f _k$ converges weakly to a catenoid.  相似文献   

16.
In this paper we prove several related results concerning smooth $\mathbb{Z }_p$ or $\mathbb{S }^1$ actions on $4$ -manifolds. We show that there exists an infinite sequence of smooth $4$ -manifolds $X_n$ , $n\ge 2$ , which have the same integral homology and intersection form and the same Seiberg-Witten invariant, such that each $X_n$ supports no smooth $\mathbb{S }^1$ -actions but admits a smooth $\mathbb{Z }_n$ -action. In order to construct such manifolds, we devise a method for annihilating smooth $\mathbb{S }^1$ -actions on $4$ -manifolds using Fintushel-Stern knot surgery, and apply it to the Kodaira-Thurston manifold in an equivariant setting. Finally, the method for annihilating smooth $\mathbb{S }^1$ -actions relies on a new obstruction we derived in this paper for existence of smooth $\mathbb{S }^1$ -actions on a $4$ -manifold: the fundamental group of a smooth $\mathbb{S }^1$ -four-manifold with nonzero Seiberg-Witten invariant must have infinite center. We also include a discussion on various analogous or related results in the literature, including locally linear actions or smooth actions in dimensions other than four.  相似文献   

17.
We will prove that there are no stable complete hypersurfaces of $\mathbb {R}^4$ with zero scalar curvature, polynomial volume growth and such that $\frac{(-K)}{H^3}\ge c>0$ everywhere, for some constant $c>0$ , where K denotes the Gauss-Kronecker curvature and $H$ denotes the mean curvature of the immersion. Our second result is the Bernstein type one there is no entire graphs of $\mathbb {R}^4$ with zero scalar curvature such that $\frac{(-K)}{H^3}\ge c>0$ everywhere. At last, it will be proved that, if there exists a stable hypersurface with zero scalar curvature and $\frac{(-K)}{H^3}\ge c>0$ everywhere, that is, with volume growth larger than polynomial growth of order four, then its tubular neighborhood is not embedded for suitable radius.  相似文献   

18.
In this paper, let $n$ be a positive integer and $P=diag(-I_{n-\kappa },I_\kappa ,-I_{n-\kappa },I_\kappa )$ for some integer $\kappa \in [0, n]$ , we prove that for any compact convex hypersurface $\Sigma $ in $\mathbf{R}^{2n}$ with $n\ge 2$ there exist at least two geometrically distinct P-invariant closed characteristics on $\Sigma $ , provided that $\Sigma $ is P-symmetric, i.e., $x\in \Sigma $ implies $Px\in \Sigma $ . This work is shown to extend and unify several earlier works on this subject.  相似文献   

19.
In this paper we study cluster algebras $\mathcal{A}$ of type $A_2^{(1)}$ . We solve the recurrence relations among the cluster variables (which form a T-system of type $A_2^{(1)}$ ). We solve the recurrence relations among the coefficients of $\mathcal{A}$ (which form a Y-system of type $A_2^{(1)}$ ). In $\mathcal{A}$ there is a natural notion of positivity. We find linear bases B of $\mathcal{A}$ such that positive linear combinations of elements of B coincide with the cone of positive elements. We call these bases atomic bases of $\mathcal{A}$ . These are the analogue of the “canonical bases” found by Sherman and Zelevinsky in type $A_{1}^{(1)}$ . Every atomic basis consists of cluster monomials together with extra elements. We provide explicit expressions for the elements of such bases in every cluster. We prove that the elements of B are parameterized by ?3 via their g-vectors in every cluster. We prove that the denominator vector map in every acyclic seed of $\mathcal{A}$ restricts to a bijection between B and ?3. We find explicit recurrence relations to express every element of $\mathcal{A}$ as linear combinations of elements of B.  相似文献   

20.
Extending a result of Meyer and Reisner (Monatsh Math 125:219–227, 1998), we prove that if ${g: \mathbb{R}\to \mathbb{R}_+}$ is a function which is concave on its support, then for every m > 0 and every ${z\in\mathbb{R}}$ such that g(z) > 0, one has $$ \int\limits_{\mathbb{R}} g(x)^mdx\int\limits_{\mathbb{R}} (g^{*z}(y))^m dy\ge \frac{(m+2)^{m+2}}{(m+1)^{m+3}},$$ where for ${y\in \mathbb{R}}$ , ${g^{*z}(y)=\inf_x \frac{(1-(x-z)y)_+}{g(x)}}$ . It is shown how this inequality is related to a special case of Mahler’s conjecture (or inverse Santaló inequality) for convex bodies. The same ideas are applied to give a new (and simple) proof of the exact estimate of the functional inverse Santaló inequality in dimension 1 given in Fradelizi and Meyer (Adv Math 218:1430–1452, 2008). Namely, if ${\phi:\mathbb{R}\to\mathbb{R}\cup\{+\infty\}}$ is a convex function such that ${0 < \int e^{-\phi} < +\infty}$ then, for every ${z\in\mathbb{R}}$ such that ${\phi(z) < +\infty}$ , one has $$ \int\limits_{\mathbb{R}}e^{-\phi}\int\limits_{\mathbb{R}} e^{-\mathcal{L}^z\phi}\ge e,$$ where ${\mathcal {L}^z\phi}$ is the Legendre transform of ${\phi}$ with respect to z.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号