首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CoFe2O4@SiO2‐CPTES‐Guanidine‐Cu(II) magnetic nanoparticles were synthesized and used as a new, inexpensive and efficient heterogeneous catalyst for the synthesis of polyhydroquinolines and 2,3‐dihydroquinazoline‐4(1H)‐ones and for the oxidation of sulfides. The structure of this nanocatalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, X‐ray diffraction and inductively coupled plasma optical emission spectrometry. Simple preparation, high catalytic activity, simple operation, high yields, use of green solvents, easy magnetic separation and reusability of the catalyst are some of the advantages of this protocol.  相似文献   

2.
A novel magnetic ferrocene‐labelled ionic liquid based on triazolium, [Fe3O4@SiO2@Triazol‐Fc][HCO3], has been synthesized and has been successfully introduced as a recyclable heterogeneous nanocatalyst. The catalytic activity of the novel magnetic nanoparticles was evaluated in the one‐pot three‐component synthesis of a wide variety of Betti bases. A simple, facile and highly efficient green method has been developed for the synthesis of kojic acid‐containing Betti base derivatives at room temperature. Additionally, this new protocol has notable advantages such as short reaction times, green reaction conditions, high yields and simple workup and purification steps. Also, the novel nanocatalyst could be easily recovered using an external magnetic field and reused for six consecutive reaction cycles without significant loss of activity. The newly synthesized nanocatalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller measurements.  相似文献   

3.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

4.
A simple and green method for the synthesis of palladium nanoparticles using an aqueous extract of Sapindus mukorossi seed has been demonstrated. The synthesized nanoparticles were characterized using UV–visible spectroscopy, powxder X‐ray diffraction, energy‐dispersive X‐ray analysis and transmission electron microscopy. The nanocatalyst was successfully utilized in an efficient Suzuki–Miyaura cross‐coupling reaction at room temperature.  相似文献   

5.
Cu–S‐(propyl)‐2‐aminobenzothioate supported on functionalized Fe3O4 magnetic nanoparticles is reported as a reusable and highly efficient nanocatalyst for the one‐pot synthesis of polyhydroquinoline derivatives and also for selective oxidation of sulfides to sulfoxides. The prepared nanoparticles were characterized using Fourier transform infrared spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, transmission and scanning electron microscopies, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, inductively coupled plasma atomic emission spectroscopy and atomic absorption spectroscopy. The nanocatalyst was easily recovered using an external magnet and reused several times without significant loss of its catalytic efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, a novel magnetic mesoporous MCM‐41 silica supported ionic liquid/palladium complex (Fe3O4@MCM@IL/Pd) with core‐structure was prepared and characterized and its catalytic performance was developed under green conditions. The Fe3O4@MCM@IL/Pd was prepared via a post grafting method and was characterized using Fourier transform infrared spectroscopy, thermal gravimetric analysis, wide‐ and low‐angle powder X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, vibration sample magnetometer and energy‐dispersive X‐ray analyses. This was applied as an efficient and recoverable nanocatalyst for the one‐pot synthesis of pyrano[2,3‐d]pyrimidine derivatives under ultrasonic conditions. The catalyst was magnetically recovered and reused for 12 consecutive cycles without significant loss of its activity and selectivity.  相似文献   

7.
The immobilization of sulfonic acid on the surface of Fe3O4 magnetic nanoparticles (MNPs) as a novel acid nanocatalyst has been successfully reported. The morphological features, thermal stability, magnetic properties, and other physicochemical properties of the prepared superparamagnetic core–shell (Fe3O4@PFBA–Metformin@SO3H) were thoroughly characterized using Fourier transform infrared (FTIR), X‐ray diffraction (XRD), energy‐dispersive X‐ray spectroscopy (EDS), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis–differential thermal analysis (TGA‐DTA), atomic force microscopy (AFM), dynamic light scattering (DLS), Brunauer–Emmett–Teller (BET), and vibrating sample magnetometer (VSM) techniques. It was applied as an efficient and reusable catalyst for the synthesis of 2‐(piperazin‐1‐yl) quinoxaline and benzimidazole derivatives via a one‐pot multiple‐component cascade reaction under green conditions. The results displayed the excellent catalytic activity of Fe3O4@PFBA–metformin@SO3H as an organic–inorganic hybrid nanocatalyst in condensation and multicomponent Mannich‐type reactions. The easy separation, simple workup, excellent stability, and reusability of the nanocatalyst and quantitative yields of products and short reaction time are some outstanding advantages of this protocol.  相似文献   

8.
The surface of Fe3O4@SiO2 nanoparticles was modified using l ‐arginine as a green and available amino acid to trap palladium nanoparticles through a strong interaction between the metal nanoparticles and functional groups of the amino acid. The proposed green synthetic method takes advantage of nontoxic reagents through a simple procedure. Characterization of Fe3O4@SiO2@l ‐arginine@Pd(0) was done using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, vibrating sample magnetometry and inductively coupled plasma analysis. The catalytic activity of Fe3O4@SiO2@l ‐arginine@Pd(0) as a new nanocatalyst was investigated in C – C coupling reactions. Waste‐free, use of green medium, efficient synthesis leading to high yield of products, eco‐friendly and economic catalyst, excellent reusability of the nanocatalyst and short reaction time are the main advantages of the method presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A novel hybrid magnetic nanocatalyst was synthesized by covalent coating of Fe3O4 magnetic nanoparticles with choline chloride–urea deep eutectic solvent using 3‐iodopropyltrimethoxysilane as a linker. The structure of this new catalyst was fully characterized via elemental analysis, transmission and scanning electron microscopies, X‐ray diffraction and Fourier transform infrared spectroscopy. It was employed in the synthesis of various 2‐amino‐4H ‐pyran derivatives in water solution via an easy and green procedure. The desired products were obtained in high yields via a three‐component reaction between aromatic aldehyde, enolizable carbonyl and malononitrile at room temperature. The employed nanocatalyst was easily recovered using a magnetic field and reused four times (in subsequent runs) with less than 8% decrease in its catalytic activity.  相似文献   

10.
In this work, for the first time, Solanum melongena plant extract was used for the green synthesis of Pd/MnO2 nanocomposite via reduction osf Pd(II) ions to Pd(0) and their immobilization on the surface of manganese dioxide (MnO2) nanoparticles (NPs) as an effective support. The synthesized nanocomposite were characterized by various analytical techniques such as Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDS) and UV–Vis spectroscopy. The catalytic activity of Pd/MnO2 nanocomposite was used as a heterogeneous catalyst for the one‐pot synthesis of 5‐substituted 1H‐tetrazoles from aryl halides containing various electron‐donating or electron‐withdrawing groups in the presence of K 4 [Fe (CN) 6 ] as non‐toxic cyanide source and sodium azide. The products were obtained in good yields via a simple methodology and easy work‐up. The nanocatalyst can be recycled and reused several times with no remarkable loss of activity.  相似文献   

11.
In the present study, for the first time N‐(3‐silyl propyl) diethylene triamine N,N',N''‐tri‐sulfonic acid (SPDETATSA) was grafted on magnetic Fe3‐xTixO4 nanoparticles. The structure of the resulted nanoparticles was characterized based on Fourier‐transform infrared (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) analyses. The results confirmed the successful immobilization of sulfamic acid groups onto the magnetic support. These nanoparticles exhibited high catalytic activity as novel magnetically recyclable acid nanocatalyst in the synthesis of a diverse range of hexahydroquinolines through one‐pot tandem reactions in excellent yields. Also, this nanocatalyst performed satisfactory catalytic maintenance of activity for the synthesis of the reaction products after 4 rounds of recycling with no considerable loss of activity.  相似文献   

12.
《中国化学会会志》2018,65(7):850-855
A green synthesis of benzimidazole derivatives using recyclable magnetic 4,5‐imidazoledicarboxylic is described. The magnetic 4,5‐imidazoledicarboxylic (Fe3O4@ImDCA) nanocatalyst was characterized completely by infrared spectroscopy (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), scanning electron microscopy (SEM), and powder X‐ray diffraction (XRD), and benzimidazoles were characterized by their melting points, FT‐IR, and 1H NMR. The current approach provides a number of advantages in terms of high yields, low reaction times, the use of green media, and easy work‐up.  相似文献   

13.
Fe3O4@vitamin B1 was designed and prepared as an inexpensive and efficient heterogeneous nanocatalyst for the synthesis of new 1,3‐thiazol derivatives. The structure of the nanomagnetic catalyst was comprehensively characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry and thermogravimetric analysis. The three‐component, one‐pot condensation of arylglyoxal monohydrate, cyclic 1,3‐dicarbonyls and thioamides in water as a green solvent was applied for the preparation of 1,3‐thiazol derivatives. Simple preparation of the catalyst from commercially available materials, high catalytic activity, simple operation, short reaction times, high yields and use of green solvent are some advantages of this protocol. The superparamagnetic nanocatalyst is magnetically separable and retains its stability after recycling for at least five consecutive runs without detectable activity loss.  相似文献   

14.
An efficient nanocatalyst of ZnO‐supported CuO/Al2O3 (CuO/ZnO/Al2O3 nanocatalyst) was prepared by the co‐precipitation method and characterized by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Brunauer–Emmett–Teller surface area analysis. CuO/ZnO/Al2O3 nanocatalyst proved to be a very efficient catalyst on the synthesis of propargylamines under solvent‐free conditions in high yields. Moreover, the catalyst can be recyclable without reducing catalytic activity up to five times.  相似文献   

15.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

16.
A novel heterogeneous nanocatalyst was fabricated by depositing copper iodide and Fe3O4 nanoparticles on imidazolium‐based ionic liquid‐grafted cellulose and successfully characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry and flame atomic absorption spectrometry. It was employed to catalyse the reaction of terminal acetylenes with sulfonyl azides to afford highly reactive sulfonyl ketenimine intermediates which were subsequently trapped by secondary amines to give N ‐sulfonylamidines and N ‐sulfonylacrylamidines under solvent‐free conditions at room temperature. Good to excellent yields, very short reaction times, eco‐friendly processing, easy separation and reusability without significant loss of catalytic activity were found to be the notable features of this synthetic protocol.  相似文献   

17.
A novel chiral magnetic nanocatalyst was prepared by the surface modification of Fe3O4 magnetic nanoparticles (MNPs) with a chloropropylsilane and further by arginine to form Fe3O4@propylsilan‐arginine (Fe3O4@PS‐Arg). After the structural confirmation of Fe3O4@PS‐Arg synthesized MNPs by Fourier transform‐infrared, X‐ray diffraction, field emission‐scanning electron microscopy, transmission electron microscopy, vibrating‐sample magnetometry and thermogravimetric analyses, their catalytic activity was evaluated for one‐pot enantioselective synthesis of 3‐amino‐1‐aryl‐1H‐benzo[f]chromene‐2‐carbonitrile derivatives. The results showed that in the presence of 0.07 g Fe3O4@PS‐Arg nanocatalyst and ethanol as solvent, the best reaction yield (96%) was obtained in the least time (5 min). Easy operation, reusability and stability, short reaction time, high reaction yields and good enantioselectivity are the major advantages of the newly synthesized nanocatalyst. Also, this study provides a novel strategy for further research and investigation on the synthesis of new reusable enantioselective catalysts and chiral compounds.  相似文献   

18.
An effective one‐pot, convenient process for the synthesis of 1‐ and 5‐substituted 1H‐tetrazoles from nitriles and amines is described using1,4‐dihydroxyanthraquinone–copper(II) supported on Fe3O4@SiO2 magnetic porous nanospheres as a novel recyclable catalyst. The application of this catalyst allows the synthesis of a variety of tetrazoles in good to excellent yields. The preparation of the magnetic nanocatalyst with core–shell structure is presented by using nano‐Fe3O4 as the core, tetraethoxysilane as the silica source and poly(vinyl alcohol) as the surfactant, and then Fe3O4@SiO2 was coated with 1,4‐dihydroxyanthraquinone–copper(II) nanoparticles. The new catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, thermogravimetric analysis, vibration sample magnetometry, X‐ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm analysis and inductively coupled plasma analysis. This new procedure offers several advantages such as short reaction times, excellent yields, operational simplicity, practicability and applicability to various substrates and absence of any tedious workup or purification. In addition, the excellent catalytic performance, thermal stability and separation of the catalyst make it a good heterogeneous system and a useful alternative to other heterogeneous catalysts. Also, the catalyst could be magnetically separated and reused six times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Fe3O4–Schiff base of Cu(II) is found to be a recyclable and heterogeneous catalyst for the rapid and efficient synthesis of various 2,3‐dihydroquinazolin‐4(1H)‐one derivatives from the two‐component condensation of 2‐aminobenzamide and an aldehyde. This reaction is simple, green and cost‐effective. Separation and recycling can also be easily done by magnetic decantation of the Fe3O4 nanoparticles with an external magnet. The prepared catalyst was characterized using thermogravimetry, Fourier transform infrared spectroscopy, vibrating sample magnetometry, inductively coupled plasma analysis, X‐ray diffraction and scanning electron microscopy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
1‐Methyl imidazole‐based ionic liquid‐stabilized silica‐coated Fe3O4 magnetic nanoparticles [Fe3O4@SiO2@(CH2)3‐1‐methyl imidazole]HSO4 as a solid acid magnetic nanocatalyst was explored in the synthesis of pyrano[2,3‐d]pyrimidine derivatives. Pyrano[2,3‐d]pyrimidine derivatives were synthesized by a highly efficient three‐component reaction of various benzaldehydes, malononitrile, and barbituric acid. The catalyst was characterized by using various analysis techniques such as Fourier transform infrared (FT‐IR) spectroscopy, X‐ray diffraction (XRD), differential scanning calorimetry‐thermogravimetry analysis (DSC‐TGA), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号