首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let R be a prime ring of characteristic different from 2, with Utumi quotient ring U and extended centroid C, δ a nonzero derivation of R, G a nonzero generalized derivation of R, and f(x 1, …, x n ) a noncentral multilinear polynomial over C. If δ(G(f(r 1, …, r n ))f(r 1, …, r n )) = 0 for all r 1, …, r n R, then f(x 1, …, x n )2 is central-valued on R. Moreover there exists aU such that G(x) = ax for all xR and δ is an inner derivation of R such that δ(a) = 0.  相似文献   

2.
A finite group (G, ·) is said to be sequenceable if its elements can be arranged in a sequence a0 = e, a1, a2,…, an?1 in such a way that the partial products b0 = a0, b1 = a0a1, b2 = a0a1a2,…, bn?1 = a0a1a2 ··· an?1 are all distinct (and consequently are the elements of G in a new order). It is said to be R-sequenceable if its elements can be ordered in such a way that the partial products b0 = a0, b1 = a0a1, b2 = a0a1a2,…, bn?2 = a0a1a2 ··· an?2 are all different and so that bn?1 = a0a1a2 ··· an?1 = b0 = e. (in the first case, the ordering a0,a1,…,an?1 of the elements is said to be a sequencing of G and, in the second case, an R-sequencing of G.) It is a super P-group if every element of one particular coset hG′ of the derived group can be expressed as the product of the n elements of G in such a way that the orderings of the elements in these products are sequencings of G with the exception that, in the case that h = e, the element e of G′ must be expressed as a product of the n elements of G which forms an R-sequencing of G. It is proved that every non-Abelian group of order pq such that p has 2 as a primitive root, where p and q are distinct odd primes with p < q, is a super P-group. Also provided is evidence for the conjectures that all Abelian groups and all dihedral groups of doubly even order (except those of orders 4 and 8) are super P-groups.  相似文献   

3.
Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and f(x1,…, xn) be a multilinear polynomial over C, which is not central valued on R. Suppose that F and G are two generalized derivations of R and d is a nonzero derivation of R such that d(F(f(r))f(r) ? f(r)G(f(r))) = 0 for all r = (r1,…, rn) ∈ Rn, then one of the following holds:
  1. There exist a, p, q, c ∈ U and λ ∈C such that F(x) = ax + xp + λx, G(x) = px + xq and d(x) = [c, x] for all x ∈ R, with [c, a ? q] = 0 and f(x1,…, xn)2 is central valued on R;

  2. There exists a ∈ U such that F(x) = xa and G(x) = ax for all x ∈ R;

  3. There exist a, b, c ∈ U and λ ∈C such that F(x) = λx + xa ? bx, G(x) = ax + xb and d(x) = [c, x] for all x ∈ R, with b + αc ∈ C for some α ∈C;

  4. R satisfies s4 and there exist a, b ∈ U and λ ∈C such that F(x) = λx + xa ? bx and G(x) = ax + xb for all x ∈ R;

  5. There exist a′, b, c ∈ U and δ a derivation of R such that F(x) = ax + xb ? δ(x), G(x) = bx + δ(x) and d(x) = [c, x] for all x ∈ R, with [c, a′] = 0 and f(x1,…, xn)2 is central valued on R.

  相似文献   

4.
In this paper a system of differential equations y′ ? A(·,λ)y = 0 is considered on the finite interval [a,b] where λ ∈ C, A(·, λ):= λ A1+ A 0?1A?1(·,λ) and A 1,A 0, A ? 1 are n × n matrix-functions. The main assumptions: A 1 is absolutely continuous on the interval [a, b], A 0 and A - 1(·,λ) are summable on the same interval when ¦λ¦ is sufficiently large; the roots φ1(x),…,φn (x) of the characteristic equation det (φ E — A 1) = 0 are different for all x ∈ [a,b] and do not vanish; there exists some unlimited set Ω ? C on which the inequalities Re(λφ1(x)) ≤ … ≤ Re (λφn(x)) are fulfilled for all x ∈ [a,b] and for some numeration of the functions φj(x). The asymptotic formula of the exponential type for a fundamental matrix of solutions of the system is obtained for sufficiently large ¦λ¦. The remainder term of this formula has a new type dependence on properties of the coefficients A 1 (x), A o (x) and A - 1 (x).  相似文献   

5.
A tree is called starlike if it has exactly one vertex of degree greater than two. In [4] it was proved that two starlike treesG andH are cospectral if and only if they are isomorphic. We prove here that there exist no two non-isomorphic Laplacian cospectral starlike trees. Further, letG be a simple graph of ordern with vertex setV(G)={1,2, …,n} and letH={H 1,H 2, ...H n } be a family of rooted graphs. According to [2], the rooted productG(H) is the graph obtained by identifying the root ofH i with thei-th vertex ofG. In particular, ifH is the family of the paths $P_{k_1 } , P_{k_2 } , ..., P_{k_n } $ with the rooted vertices of degree one, in this paper the corresponding graphG(H) is called the sunlike graph and is denoted byG(k 1,k 2, …,k n ). For any (x 1,x 2, …,x n ) ∈I * n , whereI *={0,1}, letG(x 1,x 2, …,x n ) be the subgraph ofG which is obtained by deleting the verticesi 1, i2, …,i j ∈ V(G) (0≤j≤n), provided that $x_{i_1 } = x_{i_2 } = ... = x_{i_j } = 0$ . LetG(x 1,x 2,…, x n] be the characteristic polynomial ofG(x 1,x 2,…, x n ), understanding thatG[0, 0, …, 0] ≡ 1. We prove that $$G[k_1 , k_2 ,..., k_n ] = \Sigma _{x \in ^{I_ * ^n } } \left[ {\Pi _{i = 1}^n P_{k_i + x_i - 2} (\lambda )} \right]( - 1)^{n - (\mathop \Sigma \limits_{i = 1}^n x_i )} G[x_1 , x_2 , ..., x_n ]$$ where x=(x 1,x 2,…,x n );G[k 1,k 2,…,k n ] andP n (γ) denote the characteristic polynomial ofG(k 1,k 2,…,k n ) andP n , respectively. Besides, ifG is a graph with λ1(G)≥1 we show that λ1(G)≤λ1(G(k 1,k 2, ...,k n )) < for all positive integersk 1,k 2,…,k n , where λ1 denotes the largest eigenvalue.  相似文献   

6.
For a set A, let P(A) be the set of all finite subset sums of A. We prove that if a sequence B={b 1<b 2<⋯} of integers satisfies b 1≧11 and b n+1≧3b n +5 (n=1,2,…), then there exists a sequence of positive integers A={a 1<a 2<⋯} for which P(A)=ℕ∖B. On the other hand, if a sequence B={b 1<b 2<⋯} of positive integers satisfies either b 1=10 or b 2=3b 1+4, then there is no sequence A of positive integers for which P(A)=ℕ∖B.  相似文献   

7.
For permutation groups G of finite degree we define numbers tB(G)=|G|-1RG1(1a1(g))bi, where B=(b1,…,b1) is a tuple of non-negative integers and a1(g) denotes the number of i cycles in the element g. We show that tB(G) is the number of orbits of G, acting on a set ΔB(G) of tuples of matrices. In the case G=Sn we get a natural interpretation for combinatorial numbers connected with the Stiring numbers of the second kind.  相似文献   

8.
For a set of positive and relative prime integers A = {a 1…,a k }, let Γ(A) denote the set of integers of the form a 1 x 1+…+a k x k with each x j ≥ 0. Let g(A) (respectively, n(A) and s(A)) denote the largest integer (respectively, the number of integers and sum of integers) not in Γ(A). Let S*(A) denote the set of all positive integers n not in Γ(A) such that n + Γ(A) \ {0} ? Γ((A)\{0}. We determine g(A), n(A), s(A), and S*(A) when A = {a, b, c} with a | (b + c).  相似文献   

9.
If G is a bipartite graph with bipartition A, B then let Gm,n(A, B) be obtained from G by replacing each vertex a of A by an independent set a1, …, am, each vertex b of B by an independent set b1,…, bn, and each edge ab of G by the complete bipartite graph with edges aibj (1 ≤ i ≤ m and 1 ≤ j ≤ n). Whenever G has certain types of spanning forests, then cellular embeddings of G in surfaces S may be lifted to embeddings of Gm,n(A, B) having faces of the same sizes as those of G in S. These results are proved by the technique of “excess-current graphs.” They include new genus embeddings for a large class of bipartite graphs.  相似文献   

10.
A proof is given for the existence and uniqueness of a correspondence between two pairs of sequences {a},{b} and {ω},{μ}, satisfying bi>0 for i=1,…,n?1 and ω11<?<μn?1n, under which the symmetric Jacobi matrices J(n,a,b) and J(n?1,a,b) have eigenvalues {ω} and {μ} respectively. Here J(m,a,b) is symmetric and tridiagonal with diagonal elements ai (i=1,…,m) and off diagonal elements bi (i=1,…,m?1). A new concise proof is given for the known uniqueness result. The existence result is new.  相似文献   

11.
A solvableA-signalizer functor? assigns to any non-identity elementx of the abelian 2-subgroupA of the finite groupG anA-invariant solvable 2′-subgroupθ(C G(x)) ofC G(x) such thatθ(C G(x)) ∩C G(y) ??(C G(y)) for allx, y ∈ A #.θ is called complete ifG has a solvableA-invariant 2′-subgroupK=θ(G) such thatC k(x)=θ(C G(x)) for everyx ∈ A#. This note contains an alternate proof of the completeness theorem below.  相似文献   

12.
LetG be a finite group of automorphisms acting on a ringR, andR G={fixed points ofG}. We show that under certain conditions onR andG, whenR Gis semiprime Goldie then so isR. In particular, ifa∈R is invertible anda n∈Z(R), thenR G,withG generated by the inner automorphism determined bya, is the centralizer ofa—C R(a). The above result withR Greplaced byC R(a) is shown without the assumption thata is invertible.  相似文献   

13.
Let T = (V, A) be a tournament with p vertices. T is called completely strong path-connected if for each arc (a, b) ∈ A and k (k = 2, 3,…, p), there is a path from b to a of length k (denoted by Pk(a, b)) and a path from a to b of length k (denoted by Pk(a, b)). In this paper, we prove that T is completely strong path-connected if and only if for each arc (a, b) ∈ A, there exist P2(a, b), P2(a, b) in T, and T satisfies one of the following conditions: (a) T/T0-type graph, (b) T is 2-connected, (c) for each arc (a, b) ∈ A, there exists a Pp?1(a, b) in T.  相似文献   

14.
We examine a universal algebraic abstraction of the semigroup theoretic concept of “divides:” a divides b in an algebra A if for some n ∈ ω, there is a term t(x, y 1,…, y n ) involving all of the listed variables, and elements c 1,…, c n such that t A (a, c 1,…, c n ) = b. The first order definability of this relation is shown to be a very broad generalisation of some familiar congruence properties, such as definability of principal congruences. The algorithmic problem of deciding when a finitely generated variety has this relation definable is shown to be equivalent to an open problem concerning flat algebras. We also use the relation as a framework for establishing some results concerning the finite axiomatisability of finitely generated varieties.  相似文献   

15.
Let H(x) be a monic polynomial over a finite field F=GF(q). Denote by Na(n) the number of coefficients in Hn which are equal to an element aF, and by G the set of elements aF× such that Na(n)>0 for some n. We study the relationship between the numbers (Na(n))aG and the patterns in the base q representation of n. This enables us to prove that for “most” n's we have Na(n)≈Nb(n), a,bG. Considering the case H=x+1, we provide new results on Pascal's triangle modulo a prime. We also provide analogous results for the triangle of Stirling numbers of the first kind.  相似文献   

16.
Let G be a finite abelian group of order n and let AZ be non-empty. Generalizing a well-known constant, we define the Davenport constant of G with weight A, denoted by DA(G), to be the least natural number k such that for any sequence (x1,…,xk) with xiG, there exists a non-empty subsequence (xj1,…,xjl) and a1,…,alA such that . Similarly, for any such set A, EA(G) is defined to be the least tN such that for all sequences (x1,…,xt) with xiG, there exist indices j1,…,jnN,1?j1<?<jn?t, and ?1,…,?nA with . In the present paper, we establish a relation between the constants DA(G) and EA(G) under certain conditions. Our definitions are compatible with the previous generalizations for the particular group G=Z/nZ and the relation we establish had been conjectured in that particular case.  相似文献   

17.
In this paper we discuss a combinatorial problem involving graphs and matrices. Our problem is a matrix analogue of the classical problem of finding a system of distinct representatives (transversal) of a family of sets and relates closely to an extremal problem involving 1-factors and a long standing conjecture in the dimension theory of partially ordered sets. For an integer n ?1, let n denote the n element set {1,2,3,…, n}. Then let A be a k×t matrix. We say that A satisfies property P(n, k) when the following condition is satisfied: For every k-taple (x1,x2,…,xk?nk there exist k distinct integers j1,j2,…,jk so that xi= aii for i= 1,2,…,k. The minimum value of t for which there exists a k × t matrix A satisfying property P(n,k) is denoted by f(n,k). For each k?1 and n sufficiently large, we give an explicit formula for f(n, k): for each n?1 and k sufficiently large, we use probabilistic methods to provide inequalities for f(n,k).  相似文献   

18.
The distance graph G(D) has the set of integers as vertices and two vertices are adjacent in G(D) if their difference is contained in the set DZ. A conjecture of Zhu states that if the chromatic number of G(D) achieves its maximum value |D|+1 then the graph has a triangle. The conjecture is proven to be true if |D|?3. We prove that the chromatic number of a distance graph with D={a,b,c,d} is five only if either D={1,2,3,4k} or D={a,b,a+b,b-a}. This confirms a stronger version of Zhu's conjecture for |D|=4, namely, if the chromatic number achieves its maximum value then the graph contains K4.  相似文献   

19.
If X1,…,Xn are independent identically distributed Rd-valued random vectors with probability measure μ and empirical probability measure μn, and if a is a subset of the Borel sets on Rd, then we show that P{supAan(A)?μ(A)|≥ε} ≤ cs(a, n2)e?2n2, where c is an explicitly given constant, and s(a, n) is the maximum over all (x1,…,xn) ∈ Rdn of the number of different sets in {{x1…,xn}∩A|Aa}. The bound strengthens a result due to Vapnik and Chervonenkis.  相似文献   

20.
For a positive integer m, let A = {1 ≤ a < m2 | (a, m) = 1} and let n = |A|. For an integer x, let R(x) be the least positive residue of x modulo m and if (x, m) = 1, let x′ be the inverse of x modulo m. If m is odd, then |R(ab′)|a,bA = ?21?n(∏χa = 1m ? 1(a))), where χ runs over all the odd Dirichlet characters modulo m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号