首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Turán number T(n, l, k) is the smallest possible number of edges in a k-graph on n vertices such that every l-set of vertices contains an edge. Given a k-graph H = (V(H), E(H)), we let Xs(S) equal the number of edges contained in S, for any s-set S?V(H). Turán's problem is equivalent to estimating the expectation E(Xl), given that min(Xl) ≥ 1. The following lower bound on the variance of Xs is proved:
Var(Xs)?mmn?2ks?kns?1nk1
, where m = |E(H)| and m = (kn) ? m. This implies the following: putting t(k, l) = limn→∞T(n, l, k)(kn)?1 then t(k, l) ≥ T(s, l, k)((ks) ? 1)?1, whenever sl > k ≥ 2. A connection of these results with the existence of certain t-designs is mentioned.  相似文献   

2.
Let t = (t1,…,tn) be a point of ?n. We shall write . We put, by the definition, Wα(u, m) = (m?2u)(α ? n)/4(n ? 2)/22(α + n ? 2)/2Г(α/2)]J(α ? n)/2(m2u)1/2; here α is a complex parameter, m a real nonnegative number, and n the dimension of the space. Wα(u, m), which is an ordinary function if Re α ≥ n, is an entire distributional function of α. First we evaluate {□ + m2}Wα + 2(u, m) = Wα(u, m), where {□ + m2} is the ultrahyperbolic operator. Then we express Wα(u, m) as a linear combination of Rα(u) of differntial orders; Rα(u) is Marcel Riesz's ultrahyperbolic kernel. We also obtain the following results: W?2k(u, m) = {□ + m2}kδ, k = 0, 1,…; W0(u, m) = δ; and {□ + m2}kW2k(u, m) = δ. Finally we prove that Wα(u, m = 0) = Rα(u). Several of these results, in the particular case µ = 1, were proved earlier by a completely different method.  相似文献   

3.
The Dirichlet problem for elliptic systems of the second order with constant real and complex coefficients in the half-space  k + = {x = (x 1,…,xk ): xk > 0} is considered. It is assumed that the boundary values of a solution u = (u 1,…,u m) have the form ψ 1 ξ 1 + · · · + ψ n ξ n, 1 ≤ nm, where ξ 1,· · ·,ξ n is an orthogonal system of m-component normed vectors and ψ 1,· · ·,ψ n are continuous and bounded functions on ? k +. We study the mappings [C(? k +)] n ? (ψ 1,…,ψ n) → u(x) ?  m and [C(? k +)] n ? (ψ 1,…,ψ n) → u(x) ?  m generated by real and complex vector valued double layer potentials. We obtain representations for the sharp constants in inequalities between |u(x)| or |(z, u(x))| and ∥u| xk =0∥, where z is a fixed unit m-component vector, | · | is the length of a vector in a finite-dimensional unitary space or in Euclidean space, and (·,·) is the inner product in the same space. Explicit representations of these sharp constants for the Stokes and Lamé systems are given. We show, in particular, that if the velocity vector (the elastic displacement vector) is parallel to a constant vector at the boundary of a half-space and if the modulus of the boundary data does not exceed 1, then the velocity vector (the elastic displacement vector) is majorised by 1 at an arbitrary point of the half-space. An analogous classical maximum modulus principle is obtained for two components of the stress tensor of the planar deformed state as well as for the gradient of a biharmonic function in a half-plane.  相似文献   

4.
Let Y be a reflexive subspace of the Banach space X, let (Ω, Σ, μ) be a finite measure space, and let L(μ, X) be the Banach space of all essentially bounded μ ‐Bochner integrable functions on Ω with values in X, endowed with its usual norm. Let us suppose that Σ0 is a sub‐σ ‐algebra of Σ, and let μ0 be the restriction of μ to Σ0. Given a natural number n, let N be a monotonous norm in ?n . We prove that L(μ, Y) is N ‐simultaneously proximinal in L(μ,X), and that if X is reflexive then L(μ0, X) is N ‐simultaneously proximinal in L(μ, X) in the sense of Fathi, Hussein, and Khalil [3]. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The initial value problem on [?R, R] is considered: ut(t, x) = uxx(t, x) + u(t, x)γu(t, ±R) = 0u(0, x) = ?(x), where ? ? 0 and γ is a fixed large number. It is known that for some initial values ? the solution u(t, x) exists only up to some finite time T, and that ∥u(t, ·)∥ → ∞ as tT. For the specific initial value ? = , where ψ ? 0, ψxx + ψγ = 0, ψR) = 0, k is sufficiently large, it is shown that if x ≠ 0, then limtTu(t, x) and limtTux(t, x) exist and are finite. In other words, blow-up occurs only at the point x = 0.  相似文献   

6.
A sign pattern matrix M with zero trace is primitive non-powerful if for some positive integer k, M k ?=?J #. The base l(M) of the primitive non-powerful matrix M is the smallest integer k. By considering the signed digraph S whose adjacent matrix is the primitive non-powerful matrix M, we will show that if l(M)?=?2, the minimum number of non-zero entries of M is 5n???8 or 5n???7 depending on whether n is even or odd.  相似文献   

7.
We consider an elastic plate with the non-deformed shape ΩΣ := Ω \ Σ, where Ω is a domain bounded by a smooth closed curve Γ and Σ ⊂ Ω is a curve with the end points {γ1, γ2}. If the force g is given on the part ΓN of Γ, the displacement u is fixed on ΓD := Γ \ ΓN and the body force f is given in Ω, then the displacement vector u(x) = (u1(x), u2(x)) has unbounded derivatives (stress singularities) near γk, k = 1, 2    u(x) = ∑2k, l=1 Klk)r1/2kSCklk) + uR(x)     near γk. Here (rk, θk) denote local curvilinear polar co-ordinates near γk, k = 1, 2, SCklk) are smooth functions defined on [−π, π] and uR(x) ∈ {H2(near γk)}2. The constants Klk),   l = 1, 2, which are called the stress intensity factors at γk (abbr. SIFs), are important parameters in fracture mechanics. We notice that the stress intensity factors Klk) (l = 1, 2;  k = 1, 2) are functionals Klk) = Klk; ℒ︁, Ω, Σ) depending on the load ℒ︁, the shape of the plate Ω and the shape of the crack Σ. We say that the crack Σ is safe, if Klk; Ω)2 + K2k; Ω)2 < RẼ. By a small change of Ω the shape Σ can change to a dangerous one, i.e. we have K1k; Ω)2 + K2k; Ω)2RẼ. Therefore it is important to know how Klk) depends on the shape of Ω. For this reason, we calculate the Gâteaux derivative of Klk) under a class of domain perturbations which includes the approximation of domains by polygonal domains and the Hadamard's parametrization Γ(τ) := {x + τϕ(x)n(x);  x ∈ Γ}, where ϕ is a function on Γ and n is the outward unit normal on Γ. The calculations are quite delicate because of the occurrence of additional stress singularities at the collision points {γ3, γ4} = Γ D ∩ Γ N. The result is derived by the combination of the weight function method and the Generalized J-integral technique (abbr. GJ-integral technique). The GJ-integrals have been proposed by the first author in order to express the variation of energy (energy release rate) by extension of a crack in a 3D-elastic body. This paper begins with the weak solution of the crack problem, the weight function representation of SIF's, GJ-integral technique and finish with the shape sensitivity analysis of SIF's. GJ-integral Jω(u; X) is the sum of the P-integral (line integral) Pω(u, X) and the R-integral (area integral) Rω(u, X). With the help of the GJ-integral technique we derive an R-integral expression for the shape derivative of the potential energy which is valid for all displacement fields uH1. Using the property that the GJ-integral vanishes for all regular fields uH2 we convert the R-integral expression for the shape derivative to a P-integral expression. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

8.
Let ${\mathcal{B}_u}Let Bu{\mathcal{B}_u} be the Springer fiber over a nilpotent endomorphism u ? End(\mathbbCn){u\in {\rm End}(\mathbb{C}^n)}. Let J (u) be the Jordan form of u regarded as a partition of n. The irreducible components of Bu{\mathcal{B}_u} are all of the same dimension. They are labelled by Young tableaux of shape J (u). We study the question of the singularity of the components of Bu{\mathcal{B}_u} and show that all the components of Bu{\mathcal{B}_u} are nonsingular if and only if J(u) ? {(l,1,1,?), (l1,l2), (l1,l2,1), (2,2,2)}{J(u)\in\{(\lambda,1,1,\ldots), (\lambda_1,\lambda_2), (\lambda_1,\lambda_2,1), (2,2,2)\}}.  相似文献   

9.
A digraph G = (V, E) is primitive if, for some positive integer k, there is a uv walk of length k for every pair u, v of vertices of V. The minimum such k is called the exponent of G, denoted exp(G). The exponent of a vertex uV, denoted exp(u), is the least integer k such that there is a uv walk of length k for each vV. For a set XV, exp(X) is the least integer k such that for each vV there is a Xv walk of length k, i.e., a uv walk of length k for some uX. Let F(G, k) : = max{exp(X) : |X| = k} and F(n, k) : = max{F(G, k) : |V| = n}, where |X| and |V| denote the number of vertices in X and V, respectively. Recently, B. Liu and Q. Li proved F(n, k) = (nk)(n − 1) + 1 for all 1 ≤ kn − 1. In this article, for each k, 1 ≤ kn − 1, we characterize the digraphs G such that F(G, k) = F(n, k), thereby answering a question of R. Brualdi and B. Liu. We also find some new upper bounds on the (ordinary) exponent of G in terms of the maximum outdegree of G, Δ+(G) = max{d+(u) : uV}, and thus obtain a new refinement of the Wielandt bound (n − 1)2 + 1. © 1998 John Wiley & Sons, Inc. J. Graph Theory 28: 215–225, 1998  相似文献   

10.
An investigation is made of the polynomials fk(n) = S(n + k, n) and gk(n) = (?1)ks(n, n ? k), where S and s denote the Stirling numbers of the second and first kind, respectively. The main result gives a combinatorial interpretation of the coefficients of the polynomial (1 ? x)2k+1Σn=0fk(n)xn analogous to the well-known combinatorial interpretation of the Eulerian numbers in terms of descents of permutations.  相似文献   

11.
Let S be an operator in a Banach space H and S i (u) (i = 0, 1, ..., uH) be the evolutionary process specified by S. The following problem is considered: for a given point z 0 and a given initial condition a 0, find a correction l such that the trajectory {S i (a 0 + l)} approaches }S i (z 0)} for 0 < in. This problem is reduced to projecting a 0 on the manifold ??(z 0, f (n)) defined in a neighborhood of z 0 and specified by a certain function f (n). In this paper, an iterative method is proposed for the construction of the desired correction u = a 0 + l. The convergence of the method is substantiated, and its efficiency for the blow-up Chafee-Infante equation is verified. A constructive proof of the existence of a locally stable manifold ??(z 0, f) in a neighborhood of a trajectory of hyperbolic type is one of the possible applications of the proposed method. For the points in ??(z 0, f), the value of n can be chosen arbitrarily large.  相似文献   

12.
Let {Xn, n1} be a sequence of independent random variables (r.v.'s) with a common distribution function (d.f.) F. Define the moving maxima Yk(n)=max(Xnk(n)+1,Xnk(n)+2,…,Xn), where {k(n), n1} is a sequence of positive integers. Let Yk(n)1 and Yk(n)2 be two independent copies of Yk(n). Under certain conditions on F and k(n), the set of almost sure limit points of the vector consisting of properly normalised Yk(n)1 and Yk(n)2 is obtained.  相似文献   

13.
The set Vkn of all n-tuples (x1, x2,…, xn) with xi?, Zk is considered. The problem treated in this paper is determining σ(n, k), the minimum size of a set W ? Vkn such that for each x in Vkn, there is an element in W that differs from x in at most one coordinate. By using a new constructive method, it is shown that σ(n, p) ? (p ? t + 1)pn?r, where p is a prime and n = 1 + t(pr?1 ? 1)(p ? 1) for some integers t and r. The same method also gives σ(7, 3) ? 216. Another construction gives the inequality σ(n, kt) ? σ(n, k)tn?1 which implies that σ(q + 1, qt) = qq?1tq when q is a prime power. By proving another inequality σ(np + 1, p) ? σ(n, p)pn(p?1), σ(10, 3) ? 5 · 36 and σ(16, 5) ? 13 · 512 are obtained.  相似文献   

14.
This article presents a semigroup approach for the mathematical analysis of the inverse coefficient problems of identifying the unknown coefficient k(u(x,t)) in the quasi‐linear parabolic equation ut(x,t)=(k(u(x,t))ux(x,t))x, with Dirichlet boundary conditions u(0,t)=ψ0, u(1,t)=ψ1. The main purpose of this paper is to investigate the distinguishability of the input–output mappings Φ[?]:?? →C1[0,T], Ψ[?]:??→C1[0,T] via semigroup theory. In this paper, it is shown that if the null space of the semigroup T(t) consists of only zero function, then the input–output mappings Φ[?] and Ψ[?] have the distinguishability property. It is also shown that the types of the boundary conditions and the region on which the problem is defined play an important role in the distinguishability property of these mappings. Moreover, under the light of measured output data (boundary observations) f(t):=k(u(0,t))ux(0,t) or/and h(t):=k(u(1,t))ux(1,t), the values k0) and k1) of the unknown diffusion coefficient k(u(x,t)) at (x,t)=(0,0) and (x,t)=(1,0), respectively, can be determined explicitly. In addition to these, the values ku0) and ku1) of the unknown coefficient k(u(x,t)) at (x,t)=(0,0) and (x,t)=(1,0), respectively, are also determined via the input data. Furthermore, it is shown that measured output data f(t) and h(t) can be determined analytically by an integral representation. Hence the input–output mappings Φ[?]:??→ C1[0,T], Ψ[?]:??→C1[0,T] are given explicitly in terms of the semigroup. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
It is well known that the Eulerian polynomials, which count permutations in S n by their number of descents, give the h-polynomial/h-vector of the simple polytopes known as permutohedra, the convex hull of the S n -orbit for a generic weight in the weight lattice of S n . Therefore, the Eulerian polynomials give the Betti numbers for certain smooth toric varieties associated with the permutohedra.

In this article we derive recurrences for the h-vectors of a family of polytopes generalizing this. The simple polytopes we consider arise as the orbit of a nongeneric weight, namely, a weight fixed by only the simple reflections J = {s n , s n?1, s n?2,…, s n?k+2, s n?k+1} for some k with respect to the A n root lattice. Furthermore, they give rise to certain rationally smooth toric varieties X(J) that come naturally from the theory of algebraic monoids. Using effectively the theory of reductive algebraic monoids and the combinatorics of simple polytopes, we obtain a recurrence formula for the Poincaré polynomial of X(J) in terms of the Eulerian polynomials.  相似文献   

16.
We considers-number sequences {s n (T)} n=1 of linear and continuous operatorsT on Banach spaces and prove product formulas for the operator ideals ? p,u (s) . Furthermore, we investigate the relationship between the eigenvalues of a Riesz operator and its Hilbert numbers.  相似文献   

17.
Let f(x), x ∈ ?M, M ≥ 1, be a density function on ?M, and X1, …., Xn a sample of independent random vectors with this common density. For a rectangle B in ?M, suppose that the X's are censored outside B, that is, the value Xk is observed only if XkB. The restriction of f(x) to xB is clearly estimable by established methods on the basis of the censored observations. The purpose of this paper is to show how to extrapolate a particular estimator, based on the censored sample, from the rectangle B to a specified rectangle C containing B. The results are stated explicitly for M = 1, 2, and are directly extendible to M ≥ 3. For M = 2, the extrapolation from the rectangle B to the rectangle C is extended to the case where B and C are triangles. This is done by means of an elementary mapping of the positive quarter‐plane onto the strip {(u, v): 0 ≤ u ≤ 1, v > 0}. This particular extrapolation is applied to the estimation of the survival distribution based on censored observations in clinical trials. It represents a generalization of a method proposed in 2001 by the author [2]. The extrapolator has the following form: For m ≥ 1 and n ≥ 1, let Km, n(x) be the classical kernel estimator of f(x), xB, based on the orthonormal Legendre polynomial kernel of degree m and a sample of n observed vectors censored outside B. The main result, stated in the cases M = 1, 2, is an explicit bound for E|Km, n(x) ? f(x)| for xC, which represents the expected absolute error of extrapolation to C. It is shown that the extrapolator is a consistent estimator of f(x), xC, if f is sufficiently smooth and if m and n both tend to ∞ in a way that n increases sufficiently rapidly relative to m. © 2006 Wiley Periodicals, Inc.  相似文献   

18.
Let X(t) be the trigonometric polynomial Σkj=0aj(Utcosjt+Vjsinjt), –∞< t<∞, where the coefficients Ut and Vt are random variables and aj is real. Suppose that these random variables have a joint distribution which is invariant under all orthogonal transformations of R2k–2. Then X(t) is stationary but not necessarily Gaussian. Put Lt(u) = Lebesgue measure {s: 0?s?t, X(s) > u}, and M(t) = max{X(s): 0?s?t}. Limit theorems for Lt(u) and P(M(t) > u) for u→∞ are obtained under the hypothesis that the distribution of the random norm (Σkj=0(U2j+V2j))1 2 belongs to the domain of attraction of the extreme value distribution exp{ e–2}. The results are also extended to the random Fourier series (k=∞).  相似文献   

19.
We study the fractional differential equation (*) Dαu(t) + BDβu(t) + Au(t) = f(t), 0 ? t ? 2π (0 ? β < α ? 2) in periodic Lebesgue spaces Lp(0, 2π; X) where X is a Banach space. Using functional calculus and operator valued Fourier multiplier theorems, we characterize, in UMD spaces, the well posedness of (*) in terms of R‐boundedness of the sets {(ik)α((ik)α + (ik)βB + A)?1}k∈ Z and {(ik)βB((ik)α + (ik)βB + A)?1}k∈ Z . Applications to the fractional problems with periodic boundary condition, which includes the time diffusion and fractional wave equations, as well as an abstract version of the Basset‐Boussinesq‐Oseen equation are treated. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

20.
We prove a local normal form theorem of the Gaifman type for the infinitary logic Lω( Q u)ω whose formulas involve arbitrary unary quantifiers but finite quantifier rank. We use a local Ehrenfeucht‐Fraïssé type game similar to the one in [9]. A consequence is that every sentence of Lω( Q u)ω of quantifier rank n is equivalent to an infinite Boolean combination of sentences of the form (?iy)ψ(y), where ψ(y) has counting quantifiers restricted to the (2n–1 – 1)‐neighborhood of y. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号