首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Optical and magnetic properties of Co2+-doped ZnO nanocrystals were studied. Optical measurements confirm the incorporation of Co2+ in ZnO lattice with tetrahedral geometry. Optical absorption spectra also reveal the partial bleaching of the excitonic feature attributable to an increase in electron concentration. Magnetization measurements indicate the ferromagnetic ordering in Co2+-doped ZnO nanocrystals with saturation magnetization . No structural changes were observed in lightly doped ZnO nanocrystals. The present investigations are important in obtaining the ferromagnetic Zn1−xCoxO nanocrystals.  相似文献   

2.
Transparent glass–ceramics containing zinc–aluminum spinel (ZnAl2O4) nanocrystals doped with tetrahedrally coordinated Co2+ ions were obtained by the sol–gel method for the first time. The gels of composition SiO2–Al2O3–ZnO–CoO were prepared at room temperature and heat-treated at temperature ranging 800–950 °C. When the gel samples were heated up to 900 °C, ZnAl2O4 nanocrystals were precipitated. Co2+ ions were located in tetrahedral sites in ZnAl2O4 nanocrystals. X-ray diffraction analysis shows that the crystallite sizes of ZnAl2O4 crystal become large with the heat-treatment temperature and time, and the crystallite diameter is in the range of 10–15 nm. The dependence of the absorption and emission spectra of the samples on heat-treatment temperature were presented. The difference in the luminescence between Co2+ doped glass–ceramic and Co2+ doped bulk crystal was analysed. The crystal field parameter Dq of 423 cm−1 and the Racah parameters B of 773 cm−1 and C of 3478.5 cm−1 were calculated for tetrahedral Co2+ ions.  相似文献   

3.
In this study, we introduce cobalt (Co)-doped zinc oxide (ZnO) spherical beads (SBs), synthesized using a sonochemical process, and their utilization for an acetone sensor that can be applied to an exhalation diagnostic device. The sonochemically synthezied Co-doped ZnO SBs were polycrystalline phases with sizes of several hundred nanometers formed by the aggregation of ZnO nanocrystals. As the Co doping concentration increased, the amount of substitutionally doped Co2+ in the ZnO nanocrystals increased, and we observed that the fraction of Co3+ in the Co-doped ZnO SBs increased while the fraction of oxygen vacancies decreased. At an optimal Co-doping concentration of 2 wt%, the sensor operating temperature decreased from 300 to 250 °C, response to 1 ppm acetone improved from 3.3 to 7.9, and minimum acetone detection concentration was measured at 43 ppb (response, 1.75). These enhancements are attributed to the catalytic role of Co3+ in acetone oxidation. Finally, a sensor fabricated using 2 wt% Co-doped ZnO SBs was installed in a commercially available exhalation diagnostic device to successfully measure the concentration of acetone in 1 ml of exhaled air from a healthy adult, returning a value of 0.44 ppm.  相似文献   

4.
Undoped and Fe doped CdS nanocrystals with Fe content of 2–5 at% of average crystallite size 1.2–2 nm have been obtained using chemical co-precipitation method with 2-mercaptoethonal as capping agent at 80 °C. X-ray diffraction (XRD) results showed that the undoped CdS nanocrystals were in mixed phase of cubic and hexagonal, where as the doped CdS nanocrystals were in hexagonal phase. Room-temperature ferromagnetism has been observed in Fe-doped CdS nanocrystals. Magnetic studies indicated diamagnetism in undoped, ferromagnetism in lightly doped (2 and 3 at%) and paramagnetism in samples of higher Fe content (4 and 5 at%). The substitutional incorporation of Fe3+ ion in Cd2+ sites was reflected in structural and electron paramagnetic resonance (EPR) measurements. Isolated as well as interacting Fe3+ ions are observed in EPR.  相似文献   

5.
The objective of this study was to identify a material suitable to absorb radiation at the wavelength of neodymium-doped Yttrium Aluminum Garnet (Y3Al5O12:YAG), 1064 nm. M-(M= Sm3+, Co2+, Co3+, Cr3+, and Cr4+) doped highly transparent YAG ceramics were fabricated, and their absorption spectra were measured. Unlike Co2+ and Cr3+-doped ceramic samples, Co3+ and Cr4+ and Sm3+-doped:YAG ceramics were found to have significant absorption at 1064 nm. However, the Sm3+-doped YAG clearly emerged as the best candidate because it is also transparent at 808 nm, the pumping wavelength laser diode (LD), and also at most absorption bands used for flash-lamp pumping.  相似文献   

6.
《Applied Surface Science》2005,239(3-4):279-284
Fe0.3Co0.7 alloy nanowire arrays were prepared by ac electrodepositing Fe2+ and Co2+ into a porous anodic aluminum oxide (PAO) template with diameter about 50 nm. The surface of the samples were polished by 100 nm diamond particle then chemical polishing to give a very smooth surface (below ±10 nm/μm2). The morphology properties were characterized by SEM and AFM. The bulk magnetic properties and domain structure of nanowire arrays were investigated by VSM and MFM respectively. We found that such alloy arrays showed strong perpendicular magnetic anisotropy with easy axis parallel to nanowire arrays. Each nanowire was in single domain structure with several opposite single domains surrounding it. Additionally, we investigated the domain structure with a variable external magnetic field applied parallel to the nanowire arrays. The MFM results showed a good agreement with our magnetic hysteresis loop.  相似文献   

7.
ZnO nanopowders doped with Mn2+, Ni2+, Co2+ and Cr3+ ions have been synthesised for the first time using a solvothermal reaction with microwave heating. The nanopowders were produced from a solution of zinc acetate and manganese (II), chromium (III), nickel (II) and cobalt (II) acetates, using ethylene glycol as a solvent. The content of Ni2+, Co2+ and Cr3+ ions in the solution and in the solid phase were close to each other up to 5 mol%. The doping level of Mn2+ ions in the solid is about 50% of that in the solution. No phases or compounds other than ZnO were detected by X-ray diffraction with Mn2+, Co2+ and Ni2+ doping. With Cr3+ ions a small amount of chromium oxide was found. None of the powders displayed any luminescence after doping. The Mn2+-doped powder displayed a paramagnetic behaviour. ESR and magnetisation investigations have revealed that no clustering of Mn2+ ions occurred up to a doping level of 3.9 mol%. The average grain size of powders doped with Ni2+, Cr3+, Co2+ and Mn2+ for a 10 mol% ion content in the solution was about 20 nm and the grain size dispersion 30%. With increasing dopant content the grain size decreased. It appears that the solvothermal process employed allows relatively high doping levels of the transition metal ions to be achieved without any dopant clustering or oxide precipitation.  相似文献   

8.
Gd3+-substituted micro-octahedron composites (FexCo1−x/CoyGdzFe3−yzO4) in which the Fe-Co alloy has either a bcc or fcc structure and the oxide is a spinel phase were fabricated by the hydrothermal method. The X-ray diffraction (XRD) patterns indicate that the as-synthesized Gd3+-substituted micro-octahedron composites are well crystallized. Scanning electron microscopy (SEM) images show that the final product consists of larger numbers of micro-octahedrons with the size ranging from 1.3 to 5 μm, and the size of products are increased with increasing the concentration of KOH. The effect of the Co2+/Fe2+ ratio (0?Co2+/Fe2+?1) and substitution Fe3+ ions by Gd3+ ions on structure, magnetic properties of the micro-octahedrons composites were investigated, and a possible growth mechanism is suggested to explain the formation of micro-octahedrons composites. The magnetic properties of the structure show the maximal saturation magnetization (107 emu/g) and the maximal coercivity (1192 Oe) detected by a vibrating sample magnetometer.  相似文献   

9.
Cobalt ferrite nano-particles were prepared using the co-precipitation method followed by annealing treatment. The formation of nano-particles with different composition, microstructure and sizes were confirmed by X-ray diffraction, Raman, thermogravimetric-differential thermal analysis and transmission electron microscope. The magnetic hysteresis loops measured at room temperature revealed smaller effective magnetic anisotropy constant, coercivity and remanence ratio for the samples prepared by adding the NaOH solutions into the mixed solutions of Co2+ and Fe3+ ions due to the formation of Co3+ ions. A small saturation magnetization and an enhanced coercivity were observed for the nano-particles prepared by adding the mixed solutions of Co2+ and Fe3+ ions into the NaOH solutions, which was related to the formation of outer layers with poor crystallization on the surfaces of the cobalt ferrite nano-crystals. Furthermore, the existence of these outer layers induced the oxidation of Co2+ ions in cobalt ferrite nano-crystals at 200 and 300 °C, and led to a large change on the composition and magnetic properties.  相似文献   

10.
This paper reports the results obtained in strontium barium niobate (SBN) nanocrystals in glasses doped with 1, 2.5 and 5 mol% of Er3+ ions. The melt-quenching method was applied to fabricate the glasses with composition SrO–BaO–Nb2O5–B2O3 and further thermal treatment was used to obtain glass ceramic samples from the glass precursor. X-ray diffraction patterns confirmed the formation of SBN nanocrystals with an average size of about 50 nm in diameter. Time-resolved fluorescence spectra for the emission of Er3+ ions at 1550 nm have been analyzed in order to confirm the incorporation of the Er3+ ions into the nanocrystals. Green frequency upconversion emission under excitation at 975 nm coming from the ions in the nanocrystals has been obtained. This intense upconversion is about a factor of 500 higher than that obtained from the ions which reside in the glassy phase. Moreover, temporal evolution studies have been carried out with the purpose of determining the involved upconversion mechanism and the importance of these processes as a source of losses for the optical amplification at 1550 nm.  相似文献   

11.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

12.
Polycrystalline SrCo1·2Fe10·8O19 (SCFO) and SrMn1·2Fe10·8O19 (SMFO) samples were prepared by the normal ceramic technique. Powder X-ray diffraction patterns indicated the crystallization in the M-type hexaferrite structure of the samples. X-ray absorption analyses proved Co2+ and Mn3+,4+ ions existing in SCFO and SMFO, respectively. Though Fe3+ is dominant in both the compounds, small amounts of Fe2+ and Fe4+ are present in SCFO and SMFO, respectively. Mössbauer spectra analyses also confirmed the dominance of Fe3+ in both the samples. Additionally, Fe3+ ions in the 12 k, 4f1, 4f2, and 2a sites could be attributed to the high-spin state (S = 5/2). A large QS value for the sextet assigned to the 2b site indicated that in this case Fe3+ could be in the low-spin state (S = 1/2) or there was the addition of Fe2+ (or Fe4+) when Fe in SrFe12O19 was partially replaced by Co2+ (or Mn3+,4+). The mixture of transition-metal ions with different oxidation states influenced the magnetic properties and microwave shielding ability. At frequencies f = 10–18 GHz, we have found SCFO showing the lowest reflection loss with RL = −11.1 dB at 13.2 GHz and the thickness t = 2.2 mm. With an absorption bandwidth of 0.7 GHz, and about 92% microwave energy being absorbed, SCFO is considered as a potential candidate for microwave shielding applications.  相似文献   

13.
The magnetic properties of Co-ferrite-doped hydroxyapatite (HAP) nanoparticles of composition Ca10−3xFe2xCox(PO4)6(OH)2 (where x=0, 0.1, 0.2, 0.3, 0.4 and 0.5% mole) are studied. Transmission electron microscope micrograms show that the 90 nm size nanoparticles annealed at 1250 °C have a core/shell structure. Their electron diffraction patterns show that the shell is composed of the hydroxyapatite and the core is composed of the Co-ferrite, CoFe2O4. Electron spin resonance measurements indicate that the Co2+ ions are being substituted into the Ca(1) sites in HAP lattice. X-ray diffraction studies show the formation of impurity phases as higher amounts of the Fe3+/Co2+ ions which are substituted into the HAP host matrix. The presence of two sextets (one for the A-site Fe3+ and the other for the B-site Fe3+) in the Mössbauer spectrum for all the doped samples clearly indicates that the CoFe2O4.cores are in the ferromagnetic state. Evidence of the impurity phases is seen in the appearance of doublet patterns in the Mössbauer spectrums for the heavier-doped (x=0.4 and 0.5) specimens. The decrease in the saturation magnetizations and other magnetic properties of the nanoparticles at the higher doping levels is consistent with some of the Fe3+ and Co2+ which being used to form the CoO and Fe2O3 impurity phase seen in the XRD patterns.  相似文献   

14.
A novel hydrothermal approach for the preparation of europium(III)-doped yttrium oxide (Y2O3:Eu3+) nanocrystals was reported. The as-synthesized Y2O3:Eu3+ nanocrystals with diameter of about 5 nm are highly uniform and dispersed in water. The Y2O3:Eu3+ nanocrystals were characterized by high-resolution transmission electron microscopy and fluorescence spectroscopy. Due to their well dispersity in water, low toxicity, and good photoluminescence, the Y2O3:Eu3+ nanocrystals can potentially be used in high-definition displays and fluorescence probe in bioimaging.  相似文献   

15.
Y3Fe5O12 (YIG) doped with ≦ 0.01 Co per molecule in combination with small dopes of V or (and) Mn show a decrease of the permeability in the dark (disaccommodation, DA) as well as when irradiated (photomagnetic effect, PE) with white light. All materials investigated exhibit DA and PE at 77 K, whereas in some cases effects occur at room temperature. The origin is attributed to domain wall pinning by magnetically anisotropic Co2+ ions that exchange electrons with Co3+ or other (V5+, Mn3+) ions. In view of the wide separation between the cobalt ions (?30 Å) the charge transport via iron ions is supposed to play an essential part.For a sample with higher cobalt dope the shape of the hysteresis loop at 77 K changes in the dark and the change can be hastened by irradiation. This phenomenon is attributed to the growth of a uniaxial anisotropy in the bulk of the material by Co2+, Co3+ ordering.From the electric resistivity of certain V and Si doped YIG materials it is concluded that V5+ ions oxidize Fe2+ ions according to V5++Fe2+ → V4++Fe3+.  相似文献   

16.
The structure and magnetic properties of spinel-related Mn4+-doped Li0.5Fe2.5O4 nanocrystalline particles of the composition Li0.5Fe2.25Mn0.1875O4, prepared by milling a pristine sample for different times, were investigated. The average crystallite and particle size, respectively, decreased form ~40 nm to ~10 nm and ~2.5 μm to ~10 nm with increasing milling time from 0 h to 70 h. Rietveld refinement of the XRD data of the non-milled sample show the Mn4+ dopant ions to substitute for Fe3+ at the octahedral B-sites of the spinel-related structure. The Mössbauer spectra of the milled ferrites indicate that more particles turn superparamagnetic with increasing milling time. The Mössbauer data collected at 78 K suggest that while in the non-milled sample the Mn4+ ions substitute for Fe3+ at the octahedral B-sites, this is reversed as milling proceeds with doped Mn4+ ions, balancing Fe3+ vacancies and possibly Li+ ions progressively migrate to the tetrahedral A-sites. This is supported by the slight increase observed in the magnetization of the milled samples relative to that of the non-milled one. The magnetic data suggest that in addition to the increasing superparamagentic component of the milled particles, thermal spin reversal and/or spin canting effects are possible at the surface layers of the nanoparticles.  相似文献   

17.
Nanocrystalline octahedra of cobalt ferrite CoFe2O4 powders were synthesized using the organic acid precursor route. The effect of the calcination temperature, Fe3+/Co2+ molar ratio, calcination time and type of organic acid (oxalic, benzoic and tartaric acids) on the formation, crystallite size, microstructure and magnetic properties was studied systematically. The Fe3+/Co2+ molar ratio was varied from 2 to 1.739 while the annealing temperature was controlled from 400 to 1000 °C for various periods from 0.5 to 2 h. The resulting powders were investigated using X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). XRD results indicate that a well crystallized, single spinel cobalt ferrite phase was formed for the precursors annealed at 600-800 °C for 2 h, using oxalic and tartaric acids as precursors for Fe3+/Co2+ molar ratio 1.818. The crystallite size of as-formed powders was in the range of 38.0-92.6 nm at different operating conditions. The calcination temperature and Fe3+/Co2+ molar ratio have a significant effect on the microstructure of the produced cobalt ferrite. The microstructure of the produced powders was found to be octahedra-shaped. The crystalline, pure cobalt ferrite powders with magnetic properties having a maximum saturation magnetization (76.1 emu/g) was achieved for the single phase at Fe3+/Co2+ molar ratio 1.818 and annealing temperature of 600 °C for 2 h using tartaric acid precursor.  相似文献   

18.
The Pr3+-doped tellurite zinc oxide (TZO) glasses by conventional melt and quenching technique have been prepared. The absorption spectra of samples doped with different concentrations of triply ionized praseodymium ions have been analyzed. Several upconversion emission bands of the Pr3+ ions doped in tellurite zinc oxide glasses under 980?nm excitation have been observed. The possible excitation mechanisms responsible for upconversion emissions spanning from blue to near infrared region have been discussed in detail.  相似文献   

19.
Fe-doped mesoporous titanium dioxide (M-TiO2-Fe) thin films have been prepared on indium tin oxide (ITO) glass substrates by sol–gel and spin coating methods. All films exhibited mesoporous structure with the pore size around 5–9 nm characterized by small angle X-ray diffraction (SAXRD) and further confirmed by high resolution transmission electron microscopy (HRTEM). Raman spectra illustrated that lower Fe-doping contributed to the formation of nanocrystalline of M-TiO2-Fe thin films. X-ray photoelectron spectroscopy (XPS) data indicated that the doped Fe ions exist in forms of Fe3+, which can play a role as e or h+ traps and reduce e/h+ pair recombination rate. Optical properties including refractive indices/n, energy gaps/Eg and Urbach energy width/E0 of the thin films were estimated and investigated by UV/vis transmittance spectra. The presence of Fe content extended the light absorption band and decreased the values of n, implying enhanced light response and performance on dye-sensitized solar cells (DSSC). The optimum Fe content in M-TiO2-Fe thin films is determined as 10 mol%, for its compatibility of well crystalline and well potential electron transfer performance.  相似文献   

20.
20 at.% Yb:YAG single crystals have been grown by the CZ method and gamma-ray irradiation induced color centers and valence change of Fe3+ and Y b3+ ions in Yb:YAG have been studied. One significant 255 nm absorption band was observed in as-grown crystals and was attributed to Fe3+ ions. Two additional absorption (AA) bands located at 255 nm and 345 nm, respectively, were produced after gamma irradiation. The changes in the AA spectra after gamma irradiation and air annealing are mainly related to the charge exchange of the Fe3+, Fe2+, oxygen vacancies and F-type color centers. Analysis shows that the broad AA band is associated with Fe2+ ions and F-type color centers. The transition Y b3+→Y b2+ takes place as an effect of recharging of one of the Y b3+ ions from a pair in the process of gamma irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号