首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have studied In-stabilized c(8 × 2)-reconstructed InAs(1 0 0) and InSb(1 0 0) semiconductor surfaces, which play a key role in growing improved III–V interfaces for electronics devices, by core-level photoelectron spectroscopy and first-principles calculations. The calculated surface core-level shifts (SCLSs) for the ζ and ζa models, which have been previously established to describe the atomic structures of the III–V(1 0 0)c(8 × 2) surfaces, yield hitherto not reported interpretation for the As 3d, In 4d, and Sb 4d core-level spectra of the III–V(1 0 0)c(8 × 2) surfaces, concerning the number and origins of SCLSs. The fitting analysis of the measured spectra with the calculated ζ and ζa SCLS values shows that the InSb spectra are reproduced by the ζ SCLSs better than by the ζa SCLSs. Interestingly, the ζa fits agree better with the InAs spectra than the ζ fits do, indicating that the ζa model describes the InAs surface better than the InSb surface. These results are in agreement with previous X-ray diffraction data. Furthermore, an introduction of the complete-screening model, which includes both the initial and final state effects, does not improve the fitting of the InSb spectra, proposing the suitability of the initial-state model for the SCLSs of the III–V(1 0 0)c(8 × 2) surfaces. The found SCLSs are discussed with the ab initio on-site charges.  相似文献   

2.
We have investigated the interaction of molecular oxygen with the Ag(1 0 0) surface in a temperature range from 130 K to 470 K and an oxygen partial pressure ranging up to 10 mbar by scanning tunneling microscopy, low electron energy diffraction, Auger electron spectroscopy and ab initio density functional calculations. We find that at 130 K, following oxygen exposures of 6000 Langmuirs O2, the individual oxygen atoms are randomly distributed on the surface. When the sample is exposed to 10 mbar O2 at room temperature, small, p(2 × 2) reconstructed patches are formed on the surface. After oxidation at ≈470 K and 10 mbar O2 pressure the surface undergoes a c(4 × 6) reconstruction coexisting with a (6 × 6) superstructure. By ab initio thermodynamic calculations it is shown that the c(4 × 6) reconstruction is an oxygen adsorption induced superstructure which is thermodynamically stable for an intermediate range of oxygen chemical potential.  相似文献   

3.
Fabien Silly 《Surface science》2006,600(17):219-223
Scanning tunneling microscopy (STM) is used to investigate the (0 0 1) surface structure of Nb doped SrTiO3 single crystals annealed in ultra high vacuum (UHV). Atomically resolved images of the (2 × 2) reconstructed surface are obtained after annealing a chemically etched sample. With further annealing dotted row domains appear, which coexist with the (2 × 2) reconstruction. The expansion of these domains with further annealing gives rise to the formation of a TiO2 enriched c(4 × 4) reconstruction.  相似文献   

4.
The optimized structure of the WO3(0 0 1) surface with various types of termination ((1 × 1)O, (1 × 1)WO2, and c(2 × 2)O) has been simulated using density functional theory with the Perdew-Wang 91 gradient corrected exchange-correlation functional. While the energy of bulk WO3 depends weakly on the distortions and tilting of the WO6 octahedra, relaxation of the (0 0 1) surface results in a significant decrease of surface energy (from 10.2 × 10−2 eV/Å2 for the cubic ReO3-like, c(2 × 2)O-terminated surface to 2.2 × 10−2 eV/Å2 for the relaxed surface). This feature illustrates a potential role of surface relaxation in formation of crystalline nano-size clusters of WO3. The surface relaxation is accompanied by a dramatic redistribution of the density of states near the Fermi level, in particular a transformation of surface electronic states. This redistribution is responsible for the decrease of electronic energy and therefore is suggested to be the driving force for surface relaxation of the WO3(0 0 1) surface and, presumably, similar surfaces of other transition metal oxides.  相似文献   

5.
A. Khatiri 《Surface science》2004,549(2):143-148
Exposure of the As-terminated GaAs(0 0 1)-c(4 × 4) reconstructed surface to atomic hydrogen (H) at different substrate temperatures (50-480 °C) has been studied by reflection high-energy electron diffraction (RHEED) and scanning tunnelling microscopy (STM). Hydrogen exposure at low temperatures (∼50 °C) produces a disordered (1 × 1) surface covered with AsHx clusters. At higher temperatures (150-400 °C) exposure to hydrogen leads to the formation of mixed c(2 × 2) and c(4 × 2) surface domains with H adsorbed on surface Ga atoms that are exposed due to the H induced loss of As from the surface. At the highest temperature (480 °C) a disordered (2 × 4) reconstruction is formed due to thermal desorption of As from the surface. The results are consistent with the loss of As from the surface, either through direct thermal desorption or as a result of the desorption of volatile compounds which form after reaction with H.  相似文献   

6.
Results of step fluctuation experiments for Mo(0 1 1), using low-energy electron microscopy, are re-examined using recently developed procedures that offer accurate coefficients of surface mass diffusion. By these means, surface diffusion Ds is documented at T/Tm ∼ 0.5, while the crossover to relaxation driven by bulk vacancy diffusion is inferred for T/Tm ∼ 0.6. Here, Tm is the melting temperature Tm = 2896 K. We obtain Ds = 4 × 10−4 exp(−1.13 eV/kBT) cm2/s for the temperature interval 1080-1680 K. Possible indications of diffusion along step edges appear for T/Tm ∼ 0.4. The same measurements of step fluctuation amplitudes determine also the step stiffness, which by symmetry is anisotropic on Mo(0 1 1). It is shown that three independent procedures yield mutually consistent step stiffness anisotropies. These are (1) step fluctuation amplitudes; (2) step relaxation rate anisotropies; and (3) the observed anisotropies of islands in equilibrium on the Mo(0 1 1) surface. The magnitude of the step stiffness obtained from step edge relaxation is consistent with earlier measurements that determine diffusion from grain boundary grooving.  相似文献   

7.
The growth of thin subnanometric silicon films on TiO2 (1 1 0)-(1 × 2) reconstructed surfaces at room temperature (RT) has been studied in situ by X-ray and ultra-violet photoelectron spectroscopies (XPS and UPS), Auger electron and electron-energy-loss spectroscopies (AES and ELS), quantitative low energy electron diffraction (LEED-IV), and scanning tunneling microscopy (STM). For Si coverage up to one monolayer, a heterogeneous layer is formed. Its composition consists of a mixture of different suboxides SiOx (1 < x ? 2) on top of a further reduced TiO2 surface. Upon Si coverage, the characteristic (1 × 2) LEED pattern from the substrate is completely attenuated, indicating absence of long-range order. Annealing the SiOx overlayer results in the formation of suboxides with different stoichiometry. The LEED pattern recovers the characteristic TiO2 (1 1 0)-(1 × 2) diagram. LEED I-V curves from both, substrate and overlayer, indicate the formation of nanometric sized SiOx clusters.  相似文献   

8.
Using infrared reflection absorption spectroscopy (IRRAS) and temperature programmed desorption (TPD), we investigated carbon monoxide (CO) adsorption and desorption behaviors on atomic checkerboard structures of Cu and Pd formed by Pd vacuum deposition at various temperatures of Cu(1 0 0). The 0.15-nm-thick Pd deposition onto a clean Cu(1 0 0) surface at room temperature (RT) showed a clear c(2 × 2) low-energy electron diffraction (LEED) pattern, i.e. Cu(1 0 0)-c(2 × 2)-Pd. The RT-CO exposure to the c(2 × 2) surfaces resulted in IRRAS absorption caused by CO adsorbed on the on-top sites of Pd. The LEED patterns of the Pd-deposited Cu(1 0 0) at higher substrate temperatures revealed less-contrasted c(2 × 2) patterns. The IRRAS intensities of the linearly bonded CO bands on 373-K-, 473-K-, and 673-K-deposited c(2 × 2) surfaces are, respectively, 25%, 22%, and 10% less intense than those on the RT-deposited surface, indicating that Pd coverages at the outermost c(2 × 2) surfaces decrease with increasing deposition temperature. In the initial stage of the 90-K-CO exposure to the RT surface, the band attributable to CO bonded to the Pd emerged at 2067 cm−1 and shifted to higher frequencies with increasing CO exposure. At saturation coverage, the band was located at 2093 cm−1. In contrast, two distinct bands around 2090 cm−1 were apparent on the spectrum of the 473-K-deposited surface: the CO saturation spectrum was dominated by an apparent single absorption at 2090 cm−1 for the 673-K-deposited surface. The TPD spectra of the surfaces showed peaks at around 200 and 300 K, which were ascribable respectively to Cu-CO and Pd-CO. Taking into account the TPD and IRRAS results, we discuss the adsorption-desorption behaviors of CO on the ordered checkerboard structures.  相似文献   

9.
We have studied the growth of cerium films on Rh(1 1 1) using STM (scanning tunneling microscopy), LEED (low energy electron diffraction), XPS (X-ray photoelectron spectroscopy) and AES (Auger electron spectroscopy). Measurements of the Ce films after room temperature deposition showed that Ce is initially forming nanoclusters in the low coverage regime. These clusters consist of 12 Ce atoms and have the shape of pinwheels. At a coverage of 0.25 ML (monolayer, ML) an adatom layer with a (2 × 2) superstructure is observed. Above 0.4 ML, Rh is diffusing through pinholes into the film, forming an unstructured mixed layer. Annealing at 250 °C leads to the formation of ordered Ce-Rh compounds based on the bulk compound CeRh3. At a coverage of 0.1 ML, small ordered (2 × 2) surface alloy domains are observed. The exchanged Rh atoms form additional alloy islands situated on the pure Rh(1 1 1) surface, showing the same (2 × 2) superstructure as the surface alloy. At a coverage of 0.25 ML, the surface is completely covered by the surface alloy and alloy islands. The (2 × 2) structure is equivalent to a (1 1 1)-plane of CeRh3, contracted by 6%. Annealing a 1 ML thick Ce layer leads to a flat surface consisting of different rotational domains of CeRh3(1 0 0). The Rh needed for alloy formation comes from 50 Å deep pits in the substrate. Finally we show that LEIS (low energy ion scattering) is not suitable for the characterization of Ce and CeRh films due to strong effects of neutralization.  相似文献   

10.
We examine the Sb incorporation and resulting surface reconstructions of Sb and GaSb deposited on GaAs(0 0 1). These films exhibit a mixed surface reconstruction of α2(2 × 4) and α(4 × 3). Initially, Sb reacts with Ga on the surface to form 2D islands of GaSb with an α(4 × 3) surface reconstruction. The 2D islands grow to a critical size of 30 nm2, beyond which the atomic surface structure of the 2D island transforms to a α2(2 × 4) reconstruction in order to reduce the strain induced surface energy. This transformation is limited by the availability of Ga, which is necessary in higher quantities for the α2(2 × 4) reconstruction than for the α(4 × 3). The transformation results in a mixed α2(2 × 4)-α(4 × 3) surface where the surface reconstruction is coupled to the surface morphology, which may in the future provide a pathway for self-assembly of structures.  相似文献   

11.
The formation and stability of Cu, Ag and Au-induced c(2 × 2) alloys at the Mo(1 0 0) and W(1 0 0) surfaces have been investigated with low-energy electron microscopy and diffraction. The ordered alloys transform to disordered overlayer structures at elevated temperature. Comparison of the transformation temperatures with energetics obtained from first principles calculations reveals the vibrational entropic contribution to the system free energy that defines alloy thermal stability. Effective Debye temperatures for metal adatoms are determined that exhibit the expected mass and bond strength dependence.  相似文献   

12.
The electronic structure of (GaAs)2/(AlAs)2(1 0 0)-c(4 × 4) superlattice surfaces was studied by means of angular-resolved photoelectron spectroscopy (ARUPS) in the photon energy range 20-38 eV. Four samples with different surface termination layers were grown and As-capped by molecular beam epitaxy (MBE). ARUPS measurements were performed on decapped samples with perfect c(4 × 4) reconstructed surfaces. An intensive surface state was, for the first time, observed below the top of the valence band. This surface state was found to shift with superlattices’ different surface termination in agreement with theoretical predictions.  相似文献   

13.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

14.
The surface bonding arrangement in nearly all the confirmed reconstructions of InAs(0 0 1) and GaAs(0 0 1) have only two types of hybridization present. Either the bonds are similar to those in the bulk and the surface atoms are sp3 hybridized or the surface atoms are in a tricoordinated bonding arrangement and are sp2 hybridized. However, dicoordinated In atoms with sp hybridization are observed on the InAs(0 0 1), In-rich, room temperature and low temperature surfaces. Scanning tunneling microscopy (STM) images of the room temperature (300 K) InAs(0 0 1) surface reveal that the In-rich surface reconstruction consists of single-atom rows with areas of high electron density that are separated by ∼4.3 Å. The separation in electron density is consistent with rows of undimerized, sp hybridized, In atoms, denoted as the β3′(4 × 2) reconstruction. As the sample is cooled to 77 K, the reconstruction spontaneously changes. STM images of the low temperature surface reveal that the areas of high electron density are no longer separated by ∼4.3 Å but instead by ∼17 Å. In addition, the LEED pattern changes from a (4 × 2) pattern to a (4 × 4) pattern at 77 K. The 77 K reconstruction is consistent with two (4 × 2) subunit cells; one that contains In dimers on the row and another subunit cell that contains undimerized, sp hybridized, In atoms on the row. This combination of dimerized and undimerized subunit cells results in a new unit cell with (4 × 4) periodicity, denoted as the β3(4 × 4) reconstruction. Density functional theory (DFT) and STM simulations were used to confirm the experimental findings.  相似文献   

15.
W. Gao 《Surface science》2006,600(12):2572-2580
The interaction of vanadium oxide with epitaxial anatase films exposing (1 0 1) terraces was characterized. The TiO2 films were grown on vicinal LaAlO3 (1 1 0) substrates by oxygen plasma-assisted molecular beam epitaxy (OPA-MBE); reflection high energy and low energy electron diffraction (RHEED and LEED) indicated that the films exposed (1 0 1) terraces of the anatase TiO2 polymorph. When a vanadium oxide monolayer was deposited onto the anatase surface by OPA-MBE at 725 K, only (1 × 1) RHEED and LEED patterns were observed. The V X-ray photoelectron spectroscopy (XPS) peak intensities indicated that the monolayer wetted the anatase surface and so the diffraction patterns were attributed to an epitaxial vanadia layer. Analysis of the vanadium oxide monolayer by X-ray and ultraviolet photoelectron spectroscopies revealed that the V was predominantly 5+. When the vanadia coverage was increased at 725 K, Auger electron spectra showed only very slow attenuation of the anatase Ti peaks while spots began to develop in RHEED patterns recorded along the LaAlO3 direction; both indicative of 3-D cluster formation. In the orthogonal direction, the RHEED patterns showed unusual diagonal streaks. Meanwhile, the (1 × 1) LEED pattern persisted even after 30 nm of vanadia was deposited. This was attributed to gaps between the 3-D clusters exposing the epitaxial monolayer. Core level XPS spectra of the 3-D clusters revealed a broad V 2p3/2 peak that was centered at the position expected for V4+ but could be deconvoluted into three peaks corresponding to V3+, V4+, and V5+. It is shown that crystallographic shear that accommodates such variations in the oxygen content of V oxides can lead to the diagonal streaks in RHEED patterns recorded along the LaAlO3 [0 0 1] direction even as the pattern in the orthogonal direction shows sharp transmission spots. The results show that vanadia growth on anatase (1 0 1) proceeds through the Stranski-Krastanov mode with a strong vanadia-titania interaction stabilizing a dispersed vanadia monolayer. The results are compared with previous data for vanadia growth on anatase (0 0 1) where smooth, epitaxial VO2 films grow ad infinitum.  相似文献   

16.
The surface structure of BaO(1 1 1) has been determined using STM and computer modelling. The BaO(1 1 1) surface was prepared in thin film form on Pt(1 1 1) and presents a surface with twice the lattice parameter expected for that of the bulk termination, i.e. a (2 × 2) reconstruction. Computer modelling indicates that the bulk termination is unstable, but that the (2 × 2) reconstructed BaO(1 1 1) surface has a low surface energy and is hence a stable surface reconstruction. The (2 × 2) reconstruction consists of small, three-sided pyramids with (1 0 0) oriented sides and either oxygen or barium ions at the apices. Less regular surface reconstructions containing the same pyramids are almost equally stable, indicating that we may also expect less regular regions to appear with a fairly random distribution of these surface species. The simulations further suggest that a regular (4 × 4) reconstruction built up of bigger pyramids is even more energetically favourable, and some evidence is found for such a structure in the STM.  相似文献   

17.
Low-energy electron diffraction and scanning tunneling microscopy have been used to probe the surface atomic structure of Cu2O(1 1 1) after various sample preparations. Annealing in oxygen gives a stoichiometric (1 × 1) oxygen terminated surface and further annealing in ultra-high vacuum results in a clear reconstruction and surface faceting. Tunneling from filled states in the reconstructed surface reveals a hexagonal pattern of large protrusions, which show an internal structure. The reconstruction is believed to be due to one-third of a monolayer of ordered oxygen vacancies. At areas on the surface where the large features are missing, another smaller type of protrusions is visible, which is associated with the ideal (1 × 1) surface. The relative position of the two types of features gives two possible models of the (1 1 1) surface. In the first model, the (1 × 1) surface is the ideal bulk terminated surface and coordinatively unsaturated oxygen ions are missing in the reconstructed surface. The second model agrees with the first model with the exception that coordinatively unsaturated copper ions in the outmost copper layer are missing in both the (1 × 1) and the reconstructed surface. The latter model is supported by previous surface free energy calculations. Since the undercoordinated copper ions have been suggested to be the catalytic active sites of Cu2O(1 1 1), the presence or absence of these cations could be of great importance for the fundamental understanding of the surface reactivity of Cu2O and of copper-based catalysts.  相似文献   

18.
Eldad Herceg 《Surface science》2006,600(19):4563-4571
The formation of a well-ordered p(2 × 2) overlayer of atomic nitrogen on the Pt(1 1 1) surface and its reaction with hydrogen were characterized with reflection absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The p(2 × 2)-N overlayer is formed by exposure of ammonia to a surface at 85 K that is covered with 0.44 monolayer (ML) of molecular oxygen and then heating to 400 K. The reaction between ammonia and oxygen produces water, which desorbs below 400 K. The only desorption product observed above 400 K is molecular nitrogen, which has a peak desorption temperature of 453 K. The absence of oxygen after the 400 K anneal is confirmed with AES. Although atomic nitrogen can also be produced on the surface through the reaction of ammonia with an atomic, rather than molecular, oxygen overlayer at a saturation coverage of 0.25 ML, the yield of surface nitrogen is significantly less, as indicated by the N2 TPD peak area. Atomic nitrogen readily reacts with hydrogen to produce the NH species, which is characterized with RAIRS by an intense and narrow (FWHM ∼ 4 cm−1) peak at 3322 cm−1. The areas of the H2 TPD peak associated with NH dissociation and the XPS N 1s peak associated with the NH species indicate that not all of the surface N atoms can be converted to NH by the methods used here.  相似文献   

19.
Infrared reflection absorption spectroscopy (IRRAS) was used to investigate carbon monoxide (CO) adsorption on Pt(1 0 0) surfaces deposited with Co layers with different thicknesses. Pt(1 0 0) surfaces cleaned in ultrahigh vacuum showed surface reconstruction, i.e., Pt(1 0 0)-hex: two absorption bands ascribable to adsorbed CO on the 1 × 1 surface and hex domains emerge at 2086 and 2074 cm−1, respectively, after 1.0 L CO exposure. Deposition of a 0.3-nm-thick-Co layer on Pt(1 0 0)-hex at 333 K changes the low-energy electron diffraction (LEED) pattern from hex to p(1 × 1), indicating that the deposited Co lifts the reconstruction. The IRRAS spectrum for 1.0-L-CO-exposed Co0.3 nm/Pt(1 0 0)-hex fabricated at 333 K yields a single absorption band at 2059 cm−1. For Co0.3 nm/Pt(1 0 0)-hex fabricated at 693 K, the LEED pattern shows a less-contrasted hex and the pattern remains nearly unchanged even after CO exposure of 11 L, although only 1.0 L CO exposure to Pt(1 0 0)-hex lifts the surface reconstruction. A Co0.3 nm/Pt(1 0 0)-hex surface fabricated at 753 K exhibits an absorption band at 2077 cm−1, which is considered to originate from CO adsorbed on the Pt-enriched surface alloy. Co0.3 nm/Pt(1 0 0)-hex surfaces fabricated above 773 K show a clear hex-reconstructed LEED pattern, and the frequencies of the adsorbed CO bands are comparable to those of Pt(1 0 0)-hex, indicating that the deposited Co atoms are diffused near the surface region. The outermost surface of the 3.0-nm-thick-Co-deposited Pt(1 0 0)-hex is composed of Pt-Co alloy domains even at a deposition temperature of 873 K. Based on the LEED and IRRAS results, the outermost surface structures of Cox/Pt(1 0 0)-hex are discussed.  相似文献   

20.
Scanning tunnelling microscopy and current imaging tunnelling spectroscopy were used to study the topographic and electronic structure of a reduced TiO2(1 0 0) surface. The STM results showed that the TiO2(1 0 0) surface is capable to form (1 × 7) reconstruction which can transform to (1 × 3) reconstruction due to reoxidation of the surface. The CITS results showed that the (1 × 7) reconstruction is much more metallic in compared to the (1 × 3) reconstruction showing pronounced surface states at energy 1.3 eV and 0.8 eV below the Fermi level and at energy 1.0-1.2 eV above the Fermi level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号