首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat capacity of two rare-earth orthoferrites HoFeO3 and LuFeO3 were measured between 1.8 and 200 K. A distinctly large and two small heat capacity anomalies were detected for HoFeO3 under zero magnetic field around 3.3, 53 and 58 K, respectively. The low-temperature anomaly with a peak at 3.3 K is due to the ordering of Ho3+ ions and the estimated magnetic entropy for this transition was favorably compared with the expected (R ln 2). Application of magnetic field significantly affects the positions and the magnitudes of the anomaly at 3.3 K. Energies of low-lying levels of the lowest J-term of Ho3+ ion were roughly estimated through analysis of the Schottky heat capacity.  相似文献   

2.
Magnetization and neutron diffraction studies have been performed on Ce4Sb3 compound (cubic Th3P4-type, space group I4¯3d, no. 220). Magnetization of Ce4Sb3 reveals a ferromagnetic transition at ∼5 K, the temperature below which the zero-field-cooled and field-cooled magnetization bifurcate in low applied fields. However, a saturation magnetization (MS) value of only ∼0.93μB/Ce3+ is observed at 1.8 K, suggesting possible presence of crystal field effects and a paramagnetic/antiferromagnetic Ce3+ moment. Magnetocaloric effect in this compound has been computed using the magnetization vs. field data obtained in the vicinity of the magnetic transition, and a maximum magnetic entropy change, −ΔSM, of ∼8.9 J/kg/K is obtained at 5 K for a field change of 5 T. Inverse magnetocaloric effect occurs at ∼2 K in 5 T indicating the presence of antiferromagnetic component. This has been further confirmed by the neutron diffraction study that evidences commensurate antiferromagnetic ordering at 2 K in zero magnetic field. A magnetic moment of ∼1.24μB/Ce3+ is obtained at 2 K and the magnetic moments are directed along Z-axis.  相似文献   

3.
The specific heat of single-crystal NdMnO3 was investigated from 2 to 20 K under different magnetic fields up to 8 T. All the specific heat data show a Schottky-like anomaly, which becomes more indistinctive as increasing magnetic field. The experiment data were successfully fitted by taking into account factors such as crystal-field splitting, the two-level Schottky anomaly, the lattice vibration, and type-A antiferromagnetic (A-AF) spin waves. It was found that the splitting of the ground state doublet of Nd3+ ion increases linearly with magnetic field. The above phenomena can be interpreted in terms of the model of unchanged effective molecular field at Nd3+ site caused by the ferromagnetic component of A-AF structure of Mn spins. This ferromagnetic component is likely caused by the GdFeO3-type octahedron rotation. In addition, it was also found that the magnetic field increases the spin-wave stiffness coefficient, but reduces the Debye temperature.  相似文献   

4.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

5.
The structural and magnetic properties of Pr0.75Na0.25MnO3 have been investigated experimentally. At room temperature, the compound shows paramagnetic characteristic. Along with decreasing temperature, a peak appears in the magnetization versus temperature curve around 220 K. To clarify whether this peak is associated with the ordering arrangement of Mn3+ and Mn4+ ions, electron diffraction experiments were carried out below and above 220 K respectively. Only basic Brag diffraction spots can be observed at high temperatures, however, superlattice diffraction appears below 220 K. This provides direct evidence for the existence of charge ordering in Pr0.75Na0.25MnO3. We find the Mn3+ and Mn4+ cations form zigzag chains in a-c plane by analyzing the diffraction patterns. Combining with the magnetization measurements and the results of electron spin resonance, we confirm the antiferromagnetic phase and ferromagnetic component coexist in Pr0.75Na0.25MnO3 below 120 K.  相似文献   

6.
We report the magnetocaloric effect in the metamagnetic compound Gd2In obtained from magnetization measurement. Gd2In was previously reported to have two magnetic transitions: (i) a paramagnetic to ferromagnetic transition below 190 K and (ii) a ferromagnetic to an antiferromagnetic state below 105 K. The low temperature antiferromagnetic state is unstable under an applied magnetic field and undergoes metamagnetic transition to a ferromagnetic like state. We observe conventional positive magnetocaloric effect (the magnetic entropy change, ΔSM<0) around 190 K at all applied fields. The magnetocaloric effect is found to be inverse (negative) at low fields around 105 K (ΔSM>0), however it turns positive at higher fields (ΔSM<0). The observed anomaly is found to be related to the field induced transition which drives the system from an antiferromagnetic to a ferromagnetic state.  相似文献   

7.
We report the results of the temperature-dependent neutron diffraction measurements on the nearly half-doped (La0.325Tb0.125)(Ca0.3Sr0.25)MnO3 manganite sample. The simultaneous doping of magnetic Tb3+ and divalent Sr2+ in the La0.7Ca0.3MnO3 system results into a large A-site size disorder. Rietveld refinement of neutron diffraction data reveal that the single phase sample crystallizes in a distorted orthorhombic structure. Increased 〈rA〉 value affects the transport behavior that results into an insulating-like behavior of the sample. Under application of 1 T field sample exhibit insulating-like behavior while insulator-metal transition (TIM) is exhibited under 5 and 8 T fields. Variable range hoping (VRH) mechanism of charge carriers is exhibited in the insulating region. Field cooled and zero field cooled magnetization measurement shows the Curie temperature (TC)~47 K. The refinement of the ND data collected at various temperatures below 300 K shows that there is no structural phase transition in the compound. Around 100 K, a magnetic peak appears at lower angle that can be ascribed to the presence of the A-type antiferromagnetic (AFM) phase. Two more peaks are observed around 50 K at lower angles that can be fitted in CE-type antiferromagnetic phase. Splitting of the peaks at lower temperatures is the signature of orbital ordering in the presently studied nearly half-doped manganite system. Results of the detailed structural analysis of the temperature-dependent ND measurements on (LaTb)0.45(CaSr)0.55MnO3 sample has been discussed in the light of coexisting A-type and CE-type antiferromagnetic phases present in the sample at low temperature.  相似文献   

8.
Pr3+ ion crystal field (CF) excitations in PrMnO3 single crystals have been studied by infrared transmission, in the 1800–8000 cm−1 range, as a function of temperature and applied magnetic field up to 13 T. No noticeable frequency shifts which might occur below TN∼100 K, as a result of the antiferromagnetic transition, are observed in the Pr3+ CF levels. A set of CF parameters that fit the experimental levels as well as the low temperature Pr3+ magnetic moment in PrMnO3 has been determined.  相似文献   

9.
We have investigated the effect of magnetic field on the low-temperature heat capacity Cp of the undoped spin-Peierls inorganic compound CuGeO3 in the dimerized phase. Below 1 K, Cp is dominated by a Schottky anomaly, which is removed above 1 K for field B higher than 3 T. This anomaly is well accounted for by a molar concentration x=0.75×10−3 of intrinsic defects, which occur predominantly on the Cu chains. This amount is confirmed by magnetization measurements. A second contribution, varying as Tν with ν=1 or 2, rises up with the field for B>1 T in the lower temperature range (from 70 mK to 0.3 K). At high field this contribution becomes very sensitive to the experimental dynamics.  相似文献   

10.
The heat capacity of cerium zirconate pyrochlore, Ce2Zr2O7, was measured from 0.4 to 305 K by hybrid adiabatic relaxation method for various magnetic field strengths. Magnetisation measurements were performed on the sample also. The results revealed a low-temperature anomaly that showed Schottky-type characteristics with increasing magnetic field strength. The estimated entropy due to the magnetic ordering of the two Ce3+ moments is 1.37R, close to the theoretical value for a doublet ground state (1.39R). The enthalpy increments relative to 298.15 K were measured by drop calorimetry from 531 to 1556 K. The obtained results significantly differ from those reported in the literature; the origin of the discrepancy is due to the probable oxidation of the pyrochlore structure into fluorite.  相似文献   

11.
The effects of A-site cation size disorder in ABO3 type charge-ordered and antiferromagnetic Pr0.5Ca0.5MnO3 system have been studied by substituting La3+, Sr2+ or Ba2+, while keeping the valency of Mn ions and the tolerance factor (t=0.921) constant in the substituted compounds. We find that the substitutions by these larger cations induce successive sharp step-like metamagnetic transitions at 2.5 K. The critical field for metamagnetism is the lowest for 3% Ba substituted compound, which has the largest A-site cation size disorder and the least distorted MnO6 octahedra, among the compounds reported here. These cation substitutions give rise to ferromagnetic clusters within antiferromagnetic matrix, indicating phase-separation at low temperatures. The growth of the clusters is found to vary with the substitution amount. The local lattice distortion of MnO6 octahedra enhances the charge ordering temperature and reduces the magnetization at high fields (>1 T) in these manganites.  相似文献   

12.
The specific heat (C) of bi-layered manganites La2−2xSr1+2xMn2O7 (x=0.3 and 0.5) is investigated for the ground state of low temperature excitations. A T3/2 dependent term in the low temperature specific heat (LTSH) is identified at zero magnetic field and suppressed by magnetic fields for x=0.3 sample, which is consistent with a ferromagnetic metallic ground state. For x=0.5 sample, a T2 term is observed and is consistent with a two-dimensional (2D) antiferromagnetic insulator. However, it is almost independent of magnetic field within the range of measured temperature (0.6-10 K) and magnetic field (6 T).  相似文献   

13.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

14.
The magnetization of native horse spleen ferritin protein is measured in pulsed magnetic fields to 55 T at T=1.52 K. The magnetization rises smoothly with negative curvature due to uncompensated Fe3+ spins and with a large high field slope due to the underlying antiferromagnetic ferritin core. Even at highest fields the magnetic moment is only ∼4% of the saturation moment of the full complement of Fe3+ in the ferritin molecule. The AC magnetic susceptibility, χAC(T,f), responding to the uncompensated spins, reaches a maximum near the superparamagnetic blocking temperature with the temperature of the maximum, TM, varying with excitation frequency, TM−1 α log f for 10?f?104 Hz.  相似文献   

15.
Temperature and field-dependent magnetization measurements on polycrystalline CeMnCuSi2 reveal that the Mn moments in this compound exhibit ordering with a ferromagnetic (FM) component ordered instead of the previously reported purely antiferromagnetic (AFM) ordering. The FM ordering temperature, Tc, is about 120 K and almost unchanged with external fields up to 50 kOe. Furthermore, an AFM component (such as in a canted spin structure) is observed to be present in this phase, and its orientation is modified rapidly by the external magnetic field. The Ce L3-edge X-ray absorption result shows that the Ce ions in this compound are nearly trivalent, very similar to that in the heavy fermion system CeCu2Si2. Large thermomagnetic irreversibility is observed between the zero-field-cooled (ZFC) and field-cooled (FC) M(T) curves below Tc indicating strong magnetocrystalline anisotropy in the ordered phase. At 5 K, a metamagnetic-type transition is observed to occur at a critical field of about 8 kOe, and this critical field decreases with increasing temperature. The FM ordering of the Mn moments in CeMnCuSi2 is consistent with the value of the intralayer Mn–Mn distance RaMn–Mn=2.890 Å, which is greater than the critical value 2.865 Å for FM ordering. Finally, a magnetic phase diagram is constructed for CeMnCuSi2.  相似文献   

16.
Magnetization and specific heat of Nd0.7Pb0.3MnO3 single crystal are studied at applied magnetic field. Magnetization measurement at 0.3 T shows ferromagnetic phase below 150 K (TC) and below 20 K displays an antiferromagnetic component. The latter appears to be destroyed at 4.8 T. This anomalous increase below 50 K is probably due to reorientation of Nd moments at high magnetic field. Heat capacity has been measured at 0-10 T at low temperature. The data have been fitted to contributions from free electrons (γ), ferromagnetic spin excitations (β3/2), lattice and a Schottky-like anomaly related to the rare-earth magnetism of the Nd ions. Fitting yields that β3/2 term is very small at 6 and 10 T because of introducing paramagnetic component in ferromagnetic phase at applied magnetic field. Peak due to Schottky anomaly is observed to be broadened with application of magnetic field and the magnitude of Schottky gap(ΔSch) also increases accordingly.  相似文献   

17.
The magnetic properties of Ca-doped Nd0.5Sr0.5MnO3 have been studied by electron spin resonance (ESR) and dc magnetization measurements. The antiferromagnetic order and charge order are found to occur separately at TN=200 K and Tco=150 K, respectively. Compared to the undoped Nd0.5Sr0.5MnO3, the ferromagnetic correlations are suppressed by doping of the small Ca2+ ion. In addition, the antiferromagnetic transition temperature is enhanced to 200 K, which can be explained by an increase of superexchange interaction between Mn3+ and Mn4+ ions as their distance decreases.  相似文献   

18.
Electrical and magnetic properties of TmCoIn5 and YbCoIn5 single crystals were investigated by means of electrical resistivity and magnetization measurements in the temperature range from 300 to 0.5 K under the magnetic field up to 5 T. TmCoIn5 is an antiferromagnetic metal with a Néel temperature TN=2.6 K. YbCoIn5 shows non-magnetic behavior, reflecting of divalent Yb ion.  相似文献   

19.
Charge disproportionation in La0.5Ca0.5FeO3−δ perovskite has been detected by zero-field Mössbauer spectra from 20 K to room temperature. On the basis of the parameters of center shifts and hyperfine fields, Mössbauer spectra identified that the iron ionic states are Fe3+ and Fe5+ below 150 K, Fe3+, Fe4+ and Fe5+ in the intermediate temperature region, as well as Fe3+ and Fe4+ above 220 K. At low temperatures, the system exhibits a cluster-glass-like state resulting from competition between antiferromagnetic interaction of Fe3+–Fe3+ and ferromagnetic interaction of Fe3+–Fe5+.  相似文献   

20.
The magnetic properties of the intermetallic compound Dy2CuIn3 have been investigated. Ac and dc-susceptibility measurements indicate an onset of antiferromagnetic ordering at TN=19.5 K and an additional frequency dependent transition at Tds∼9 K. Neutron diffraction studies confirm the ordered transition at 19.5±1 K. The magnetic unit cell can be described by the propagation vector k=(0.25,0.25,0) with the magnetic moment μ=2.63(4)μB/Dy3+ parallel to the c-axis. Nevertheless, neutron diffraction reveals no additional magnetic phase transition around or below 9 K, which suggests that, at lower temperatures, a spin glass state may be formed in coexistence with the antiferromagnetic mode as a result of frustration and the antagonism between ferromagnetic and antiferromagnetic exchange interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号