首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
A method has been developed for the separation and determination of a set of 11 impurities from chromium matrices using oxalate form of Amberlite IRA 93. Due to slower kinetics of formation of the anionic complex, Cr(III) passed in the effluent while impurities forming strong complexes rapidly are retained on the exchanger. The adsorption of impurities of interest is found to be uniform in pH range 2-6. The adsorbed impurities are eluted with 2 mol l−1 HNO3 and determined by inductively coupled plasma-optical emission spectrometer (ICP-OES). The percentage recoveries of Al, Bi, Cd, Co, Cu, Fe, Mn, Ni, Pb, Ga and Zn are in the range 88-101% and separation of matrix is >99.9%. The method has been applied for the analysis of two samples namely CrCl3·6H2O and Cr. The R.S.D. of the method is 5-6% at >10 μg g−1 level and ∼15% at <1 μg g−1 level. The process blank values are in the range sub-μg g−1 and detection limits are in ng g−1 range.  相似文献   

2.
2-(Methylthio)aniline-modified Amberlite XAD-2 has been synthesized by coupling it through a NNNH group. The resulting chelating resin, characterized by elemental analysis, thermogravimetric analysis and infrared spectra, was used to preconcentrate Cd, Hg, Ni, Co, Cu and Zn ions. Several parameters, such as the distribution coefficient and sorption capacity of the chelating resin, pH and flow rates of uptake and stripping, and volume of sample and eluent, were evaluated. The effect of electrolytes and cations on the preconcentration was also investigated. The recoveries were >96%. The procedure was validated by standard addition and analysis of a standard river sediment material (GBW 08301, China). The developed method was utilized for preconcentration and determination of Cd, Hg, Ni, Co, Cu and Zn in tap water and river water samples by flame atomic absorption spectrometry with satisfactory results. The 3σ detection limit and 10σ quantification limit for Cd, Hg, Ni, Co, Cu and Zn were found to be 0.022, 0.028, 0.033, 0.045, 0.041, 0.064 μg l−1 and 0.041, 0.043, 0.052, 0.064, 0.058, 0.083 μg l−1, respectively.  相似文献   

3.
Gopalan Venkatesh 《Talanta》2007,71(1):282-287
Amberlite XAD-16 was loaded with 4-{[(2-hydroxyphenyl)imino]methyl}-1,2-benzenediol (HIMB) via azo linker and the resulting resin AXAD-16-HIMB explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II) in the pH range 5.0-8.0. The sorption capacity was found between 56 and 415 μmol g−1 and the preconcentration factors from 150 to 300. Tolerance limits for foreign species are reported. The kinetics of sorption is not slow, as t1/2 is ≤15 min. The chelating resin can be reused for seventy cycles of sorption-desorption without any significant change (<2.0%) in the sorption capacity. The limit of detection values (blank + 3 s) are 1.72, 1.30, 2.56, 2.10, 0.44, 2.93, 2.45 and 3.23 μg l−1 for Zn, Mn, Ni, Pb, Cd, Cu, Fe and Co, respectively. The enrichment on AXAD-16-HIMB coupled with flame atomic absorption spectrometry (FAAS) monitoring is used to determine the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in powdered milk samples.  相似文献   

4.
A method for the direct determination (without sample pre-digestion) of microelements in fruit juice by inductively coupled plasma optical emission spectrometry has been developed. The method has been optimized by a 23 factorial design, which evaluated the plasma conditions (nebulization gas flow rate, applied power, and sample flow rate). A 1:1 diluted juice sample with 2% HNO3 (Tetra Packed, peach flavor) and spiked with 0.5 mg L− 1 of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, and Zn was employed in the optimization. The results of the factorial design were evaluated by exploratory analysis (Hierarchical Cluster Analysis, HCA, and Principal Component Analysis, PCA) to determine the optimum analytical conditions for all elements. Central point condition differentiation (0.75 L min− 1, 1.3 kW, and 1.25 mL min− 1) was observed for both methods, Principal Component Analysis and Hierarchical Cluster Analysis, with higher analytical signal values, suggesting that these are the optimal analytical conditions. F and t-student tests were used to compare the slopes of the calibration curves for aqueous and matrix-matched standards. No significant differences were observed at 95% confidence level. The correlation coefficient was higher than 0.99 for all the elements evaluated. The limits of quantification were: Al 253, Cu 3.6, Fe 84, Mn 0.4, Zn 71, Ni 67, Cd 69, Pb 129, Sn 206, Cr 79, Co 24, and Ba 2.1 µg L− 1. The spiking experiments with fruit juice samples resulted in recoveries between 80 and 120%, except for Co and Sn. Al, Cd, Pb, Sn and Cr could not be quantified in any of the samples investigated. The method was applied to the determination of several elements in fruit juice samples commercialized in Brazil.  相似文献   

5.
Summary The element contents of Cd, Co, Cu, Mn, Hg, Ni, Pb and Zn of three different types of sewage sludge were certified. The preparation, the homogeneity and the stability are reported. The certified contents as well as values for Cr and Se and for the aqua regia soluble contents of Cd, Cr, Co, Cu, Mn, Ni, Pb and Zn are given.
Zertifizierung von Schwermetallspuren (Cd, Co, Cu, Mn, Hg, Ni, Pb und Zn) in drei Klärschlammproben
Zusammenfassung In drei verschiedenen Klärschlammproben wurden die Elementgehalte an Cd, Co, Cu, Mn, Hg, Ni, Pb und Zn zertifiziert. Es wird berichtet über die Herstellung, Homogenität und Stabilität. Die zertifizierten Gehalte sowie der Gehalt von Cr, Se und der Gehalt an königswasserlöslichem Cd, Cr, Co, Cu, Mn, Ni, Pb und Zn werden angegeben.
  相似文献   

6.
A chelate resin immobilizing carboxymethylated pentaethylenehexamine (CM-PEHA resin) was prepared, and the potential for the separation and preconcentration of trace elements in water samples was evaluated through the adsorption/elution test for 62 elements. The CM-PEHA resin could quantitatively recover various elements, including Ag, Cd, Co, Cu, Fe, Ni, Pb, Ti, U, and Zn, and rare earth elements over a wide pH range, and also Mn at pH above 5 and V and Mo at pH below 7. This resin could also effectively remove major elements, such as alkali and alkaline earth elements, under acidic and neutral conditions. Solid phase extraction using the CM-PEHA resin was applicable to the determination of 10 trace elements, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn, in certified reference materials (EnviroMAT EU-L-1 wastewater and ES-L-1 ground water) and treated wastewater and all elements except for Mn in surface seawater using inductively coupled plasma atomic emission spectrometry. The detection limits, defined as 3 times the standard deviation for the procedural blank using 500 mL of purified water (50-fold preconcentration, n = 8), ranged from 0.003 μg L−1 (Mn) to 0.28 μg L−1 (Zn) as the concentration in 500 mL of solution.  相似文献   

7.
Summary The element contents of Cd, Cu, Hg, Ni, Pb and Zn of three types of soil were certified. The preparation, homogeneity and stability are reported. The certified contents as well as values for Co, Cr, Mn and Se and for the aqua regia soluble contents Cd, Cr, Cu, Mn, Ni, Pb and Zn are given.
Zertifizierung von Schwermetallspuren (Cd, Cu, Hg, Ni, Pb und Zn) in drei Bodenproben
Zusammenfassung In drei verschiedenen Bodenproben wurden die Elementgehalte an Cd, Cu, Hg, Ni, Pb und Zn zertifiziert. Es wird berichtet über die Bereitung, Homogenität und Stabilität. Die zertifizierten Gehalte sowie der Gehalt an Cr, Co, Mn und Se und der Gehalt an königswasserlöslichem Cd, Cr, Cu, Mn, Ni, Pb und Zn werden angegeben.
  相似文献   

8.
The feasibility of partial least squares (PLS) regression modeling of X-ray fluorescence (XRF) spectra of estuarine sediments has been evaluated as a tool for rapid trace element content monitoring. Multivariate PLS calibration models were developed to predict the concentration of Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V and Zn in sediments collected from different locations across the estuary of the Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of Biscay, Basque Country). The study was carried out on a set of 116 sediment samples, previously lyophilized and sieved with a particle size lower than 63 μm. Sample reference data were obtained by inductively coupled plasma mass spectrometry. 34 samples were selected for building PLS models through a hierarchical cluster analysis. The remaining 82 samples were used as a test set to validate the models. Results obtained in the present study involved relative root mean square errors of prediction varying from 21%, for the determination of Pb at hundreds μg g−1 level, up to 87%, for Ni determination at little tens μg g−1 level. An average prediction error of ±37% for the 14 elements under study was obtained, being in all cases mean differences between predicted and reference results of the same order than the standard deviation of three replicates from a same sample. Residual predictive deviation values obtained ranged from 1.1 to 3.9.  相似文献   

9.
Somer G  Unal U 《Talanta》2004,62(2):323-328
Using the DPP polarograms of wet digested cauliflower sample in acetate buffer at pH values of 2, 4 and 6, Fe, Zn, Mo, Se, Cr, Cd, Pb, Ti and Cu quantities were determined. The best separation and determination conditions for Zn, Se and Mo was pH 2; for Cr, Zn, Mo and As was pH 4; for Pb pH 6, for Ti, Cu and Fe was pH 6-7 EDTA, for Cd pH 2 EDTA and for lead pH 6, all in acetate buffer. The trace element ranges for cauliflowers from two different seasons were (first figure for winter, the second for summer) for Se 120-250 μg g−1, Fe 70-85 μg g−1, Cu 320-150 μg g−1, Ti 90-120 μg g−1, Cr 130-630 μg g−1, Zn 90-550 μg g−1, Mo 170-230 μg g−1, Cd 20 μg g−1 (in winter) and Pb 130-300 μg g−1 in dry sample. Cd was under the detection limit in summer. The length of digestion time had no effect on the recovery of copper, iron, molybdenum and zinc between 15 and 3 h of digestion.  相似文献   

10.
To an iron sample solution was added polyoxyethylene-4-isononylphenoxy ether (PONPE, nonionic surfactant, average number of ethylene oxides 7.5) and the surfactant was aggregated by the addition of lithium chloride. The iron(III) matrix was collected into the condensed surfactant phase in >99.9% yields, leaving trace metals [e.g., Ti(IV), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II), and Bi(III)] in the aqueous phase. After removing the surfactant phase by centrifugation, the remaining trace metals were concentrated onto an iminodiacetic acid-type chelating resin. The trace metals were desorbed with dilute nitric acid for the determination by inductively coupled plasma-mass spectrometry or graphite-furnace atomic absorption spectrometry. The proposed separation method allowed the analysis of high-purity iron metals for trace impurities at low μg g−1 to ng g−1 levels.  相似文献   

11.
A simple and rapid method for the direct determination of Cd, Cr, Cu, Pb and Zn in soil was developed. The method was developed using three certified reference materials of soil: Eutric Cambisol, Orthic Luvisols and Rendzina, which differed in their matrix composition. Chemical modifiers were essential to achieve reproducible and interference-free signals for the analytes studied. The best results were obtained with a Pd/Mg(NO3)2 admixture for the determination of Cd, Pb and Zn and NH4F for Cu. The combination of W (as a permanent modifier) and Mg(NO3)2 provided well-defined signal profiles for Cr. The following spectral lines were used: Cd 228.8 nm, Cr 520.6 nm, Cu 218.2 nm, Pb 205.3 nm and Zn 307.6 nm. The limit of detection was 4.2 ng g− 1 for Cd, 1.1 μg g− 1 for Cr, 0.5 μg g− 1 for Cu, 1.3 μg g− 1 for Pb and 8.6 μg g− 1 for Zn for the maximum sample mass used. Under optimized conditions, the analyte and matrix were separated effectively in situ, and aqueous standards could be used for calibration.  相似文献   

12.
Pb, Zn, Cd, Ni, Mn, Fe, V and Cu in sea water are determined by extraction of their complexes with sodium diethyldithiocarbamate into chloroform, decomposition of the chelates and inductively-coupled plasma emission spectrometry. When 1-l water samples are used, the lowest determinable concentrations are: 0.063 μg Mn l-1, 0.13 μg Zn l-1, 0.25 μg Cd l-1, 0.25 μg Fe l-1, 0.38 μg V l-1, 0.5 μg Ni l-1, 0.5 μg Cu l-1, and 2.5 μg Pb l-1. Above these levels, the relative standard deviations are better than 12% for the complete procedure.  相似文献   

13.
The BCR (the Community Bureau of Reference) of the European Union sequential extraction scheme for metal partitioning in estuarine sediments has been accelerated by using a matrix solid phase dispersion (MSPD) approach. The MSPD assisted BCR procedure consists of passing the extractants proposed by conventional BCR protocol (0.11 M acetic acid, 0.1 M hydroxylammonium chloride and 8.8 M hydrogen peroxide plus 1 M ammonium acetate) through the dispersed sample packaged inside a disposable syringe. Different silica-, magnesium- and aluminium-based materials were tested as dispersing agents and sea sand was found to offer the best performances. Variables for assisting the three stages of the BCR protocol were optimized, and accurate results were obtained when assisting the first and the third stages (exchangeable and oxidizable fractions, respectively). However, lack of accuracy was observed when assisting the second step (reducible fraction) and this result agrees with most of the assisted BCR procedures for which extracting the reducible fraction is the most troublesome stage. The organic matter oxidation (third stage) was successfully assisted by passing hydrogen peroxide at 50 °C through the dispersed sample inside de syringe just before passing ammonium acetate. Therefore, the time-consuming and unsafe conventional organic matter oxidation processes, commonly performed even for microwave/ultrasounds assisted BCR procedures, are totally avoided. Inductively coupled plasma-mass spectrometry (ICP-MS) was used as a selective detector. The target elements were Cd, Co, Cr, Mn, Ni, Sr and Zn (first stage), Cd, Co and Ni (second stage), and Co, Cr, Mn, Ni, Sr and Zn (third stage). Repeatability of the method (n = 7) was good, and RSDs values of 9, 10, 10, 8, 8, 3 and 8% was obtained for Cd, Co, Cr, Mn, Ni, Sr and Zn, respectively (first stage); 10, 9 and 9% for Cd, Co and Ni, respectively (second stage); and 6, 2, 3, 4, 7 and 9% Co, Cr, Mn, Ni, Sr and Zn, respectively (third stage). The procedure was also validated by analysing two certified reference materials (CRM 601 and CRM 701). Good accuracy was obtained for the target elements extracted at the first stage: Cd (4.0 ± 0.1 and 7.3 ± 0.09 μg g−1 in CRM 601 and CRM 701, respectively), Cr (0.36 ± 0.008 and 2.21 ± 0.08 μg g−1 in CRM 601 and CRM 701, respectively), Ni (8.0 ± 0.3 and 15.4 ± 0.3 μg g−1 in CRM 601 and CRM 701, respectively) and Zn (262 ± 3 and 203 ± 3 μg g−1 in CRM 601 and CRM 701, respectively). Also, good accuracy was observed for elements extracted at the third step: Cd (1.8 ± 0.09 and 0.29 ± 0.03 μg g−1 in CRM 601 and CRM 701, respectively), Cr (145 ± 4 μg g−1 in CRM 701), Ni (8.2 ± 0.7 and 15.1 ± 0.5 μg g−1 in CRM 601 and CRM 701, respectively) and Zn (45 ± 0.7 μg g−1 in CRM 701).  相似文献   

14.
For the first time, the formation of a luminescent hexanuclear cluster has been used for the selective determination of copper. In aqueous solutions, the non-luminescent ligand N-ethyl-N′-methylsulfonylthiourea (EMT) forms an intensely red luminescent hexanuclear Cu(I)-cluster with an emission maximum at 663 nm only with Cu(II) ions. The intensity of the luminescence is proportional to the Cu(II) concentration and allows for selective Cu determinations in the μg l−1-range. Ubiquitous metal ions such as Fe(III), Al(III), Ca(II), Mg(II), and alkaline metal ions, as well as other heavy metal ions, e.g. Co(II), Ni(II), Zn(II), Cd(II), Hg(II), and Pb(II) are tolerated in concentrations up to 50 mg l−1. The detection limit for Cu(II) in aqueous solution, calculated according to Funk et al. [Qualitätssicherung in der Analytischen Chemie, Verlag Chemie, Weinheim, 1992], is 113 μg l−1. The cluster formation has been used for the quantitative analysis of copper in tap water and in industrial water, as well as for the localization of copper adsorbed by activated-sludge flocs.  相似文献   

15.
An inductively coupled plasma-atomic emission spectrometry (ICP-AES) method is developed for determination of Cd, Co, Cr, Cu, Ni, Tl and Zn in traces in calcite, CaCO3, dolomite, CaMg(CO3)2, and gypsum, CaSO4. Interferences of a Ca/Mg matrix on analyte intensities were investigated. The results reveal that Ca does not interfere with Cr, Ni and Zn, but tends to decrease the intensity of the other elements. Magnesium as a matrix element does not interfere on with Zn, but increases the intensities of Ni, Cr and Cu, and decreases the intensities of Cd, Co and Tl. To eliminate these matrix interferences on trace element intensities, a flotation separation method is proposed. Lead(II) hexamethylenedithiocarbamate, Pb(HMDTC)2, is applied as a collector for flotation of trace elements from acidic solutions of mineral samples. The flotation of acidic aqueous solutions of calcite, dolomite and gypsum was performed at pH 6.0, using 10 mg l−1 Pb and 0.3 mmol l−1 HMDTC added to 1 l of solution tested. The method detection limits of analytes in different minerals range from 0.02 to 0.06 μg g−1 for Cd, 0.04 to 0.10 μg g−1 for Co, 0.03 to 0.13 μg g−1 for Cr, 0.02 to 0.16 μg g−1 for Cu, 0.09 to 0.30 μg g−1 for Ni, 6.45 to 7.71 μg g−1 for Tl and 0.18 to 0.20 μg g−1 for Zn.  相似文献   

16.
The effect of oxidation of anoxic sediment upon the extraction of 13 elements (Cd, Sn, Sb, Pb, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As) using the optimised Community Bureau of Reference of the European Commission (BCR) sequential extraction procedure and a dilute acid partial extraction procedure (4 h, 1 mol L−1 HCl) was investigated. Elements commonly associated with the sulfidic phase, Cd, Cu, Pb, Zn and Fe exhibited the most significant changes under the BCR sequential extraction procedure. Cd, Cu, Zn, and to a lesser extent Pb, were redistributed into the weak acid extractable fraction upon oxidation of the anoxic sediment and Fe was redistributed into the reducible fraction as expected, but an increase was also observed in the residual Fe. For the HCl partial extraction, sediments with moderate acid volatile sulfide (AVS) levels (1-100 μmol g−1) showed no significant difference in element partitioning following oxidation, whilst sediments containing high AVS levels (>100 μmol g−1) were significantly different with elevated concentrations of Cu and Sn noted in the partial extract following oxidation of the sediment. Comparison of the labile metals released using the BCR sequential extraction procedure (ΣSteps 1-3) to labile metals extracted using the dilute HCl partial extraction showed that no method was consistently more aggressive than the other, with the HCl partial extraction extracting more Sn and Sb from the anoxic sediment than the BCR procedure, whilst the BCR procedure extracted more Cr, Co, Cu and As than the HCl extraction.  相似文献   

17.
Fractionation of the metals Cd, Cr, Cu, Ni, Pb and Zn in sediments was performed for samples collected from eight locations in the Poxim river estuary of Sergipe State, northeast Brazil, using the 3-stage sequential extraction procedure proposed by the European Community Bureau of Reference (BCR). The extraction method was found to be satisfactory for analysis of certified reference material BCR-701, with recovery values ranging from 85% (Cu) to 117% (Cr). The detection limits obtained were 0.001 to 0.305 µg g− 1. Zn exhibited greatest mobility and bioavailability, indicative of anthropogenic sources, while Cr was mainly found in the residual fraction and could be used as an indicator for the contribution from natural sources. Cd, Cu, Ni and Pb were associated with the oxidizable fraction, and Pb, Cr and Ni with the reducible fraction. Principal component analysis (PCA) clearly separated the metals into three groups: I (Zn); II (Pb); III (Cd, Cu, Cr and Ni). These groupings were mainly due to different distributions of the metals in the various fractions, in sediments from the different locations. Risk assessment code (RAC) analysis indicated that although the metals presented a moderate overall risk to the aquatic environment, nickel showed a low risk (RAC < 10%) at three sites, while zinc presented a high risk (RAC > 30%) at four other sites.  相似文献   

18.
Guo Y  Din B  Liu Y  Chang X  Meng S  Liu J 《Talanta》2004,62(1):207-213
2-Aminoacetylthiophenol (AATP)-modified Amberlite XAD-2 has been synthesized by coupling it through NNNH group. The resulting chelating resin, characterized by elemental analysis, thermogravimetric analysis (TGA) and infrared (IR) spectra, was used to preconcentrate Cd, Hg, Ag, Ni, Co, Cu and Zn ions. Several parameters, such as distribution coefficient and sorption capacity of the chelating resin, pH and flow rates of uptake and striping, volume of sample and eluent, were evaluated. The effects of electrolytes and cations on the preconcentration were also investigated. The recoveries were >96%. The procedure was validated by standard addition and analysis of a standard reference sediment material (GBW 07309 China). The developed method was utilized for preconcentration and determination of Cd, Hg, Ag, Ni, Co, Cu and Zn in tap water, river water and sediment samples by inductively coupled plasma-atomic emission spectrometry (ICP-AES) with satisfactory results. The 3σ detection limits for Cd, Hg, Ag, Ni, Co, Cu and Zn were found to be 0.10, 0.23, 0.41, 0.13, 0.25, 0.39 and 0.58 μg l−1, respectively. The relative standard deviation of the determination was <10%.  相似文献   

19.
The optimised BCR sequential extraction procedure and a 4 h 1 mol L−1 HCl partial extraction have been performed on the NIST 2711 reference material for a suite of 12 elements (Cd, Sb, Pb, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As) using magnetic sector ICP-MS. A pseudo-total aqua regia digest of NIST 2711 has also been undertaken for quality assurance purposes, and comparison of the sum of the four BCR fractions, which included an aqua regia digest on the residue, with the pseudo-total aqua regia digest has been used to assess the accuracy of the BCR partitioning approach. As a result of this work, discrepancies between previous studies about BCR partitioning of elements in NIST 2711 have been discussed and an increase in confidence about the use of BCR partitioning scheme on seven elements (Cd, Pb, Al, Mn, Fe, Cu, Zn) in this standard material has been obtained. On the other hand, BCR partitioning for Sb, Cr, Co, Ni and As has been provided for the first time. Partial extraction results are also reported for the same 12 elements analysed by the optimised BCR procedure, with the partial extraction results exhibiting a strong correlation with the sum of the three labile steps of the BCR procedure.  相似文献   

20.
A silica-based inorganic sorbent was synthesized by the thermal decomposition of ammonium heptamolybdate on silica and applied for the preconcentration and simultaneous determination of Cd, Co, Cr, Cu, Fe, Mn, Ni, and Pb in river water samples using a column system with flame atomic absorption spectrometry. Attenuated total reflection-Fourier transformation infrared spectroscopy, scanning electron microscopy, and electron dispersive spectroscopy were used for sorbent characterization. The effects of pH, sample volume, eluent type, eluent concentration, eluent volume, sample flow rate, and matrix ions (Al, Bi, Ca, Mg, and Zn) on the recovery of the metals in model solutions were investigated. The adsorption capacities (µmol g?1) of SiO2-MoO3 were 88.96 (Cd), 169.69 (Co), 153.85 (Cr), 188.88 (Cu), 179.05 (Fe), 163.81 (Mn), 136.31 (Ni), and 38.61 (Pb). The detection limits of the method were 9.09, 10.82, 10.77, 49.57, 31.64, 6.40, 8.86, 19.15?µg L?1 for Cd, Co, Cr, Cu, Fe, Mn, Ni, and Pb, respectively, with a preconcentration factor of 25. The developed method was used for the determination of the target metals in real samples and the recoveries for spiked samples were found to be from 91.2% to 102.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号