首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z. Aydu?an  B. Alkan  M. Çakmak 《Surface science》2009,603(15):2271-2275
Ab initio calculations, based on pseudopotentials and density functional theory (DFT), have been performed to investigate the effect of hydrogenation on the electronic properties of P/Si(0 0 1)-(1 × 2) surface. In parallel with this, the electronic band structure of the hydrogenated and non-hydrogenated P/Si(0 0 1)-(1 × 2) surface have been calculated for half- and full-monolayer P. For the mixed Si-P dimer structure, we have identified two occupied and one unoccupied surface state, which correspond to 0.5 ML coverage of P. When this surface is terminated with H, we see that two occupied states completely disappeared and that one unoccupied state is shifted towards the conduction band. A similar calculations for the 1 ML coverage of P have been also carried out. It is seen that the unoccupied state C1 appeared in the P/Si(0 0 1)-(1 × 2) surface is passivated when this surface is terminated with the H atoms. To explain the nature of the surface states, we have also plotted the total and partial charge densities at the point of the Surface Brillouin Zone (SBZ).  相似文献   

2.
Injection of tunneling electrons and holes from the probe tips of a scanning tunneling microscope was found to enhance the hopping motion of Cl atoms between neighboring dangling-bond sites of Si dimers on Si(1 0 0)-(2 × 1) surfaces, featured by the rate of hopping linearly dependent on the injection current. The hopping rate formed peaks at sample biases of VS∼+1.25 and −0.85 V, which agree with the peaks in the local density of states spectrum measured by scanning tunneling spectroscopy. The Cl hopping was enhanced at Cl-adsorbed sites even remote from the injection point. The Cl hopping by hole injection was more efficiently enhanced by sweeping the tip along the Si dimer row than by tip-sweeping along the perpendicular direction. Such anisotropy, on the other hand, was insignificant in the electron injection case. All of these findings can be interpreted by the model that the holes injected primarily into a surface band originated from the dangling bonds of Si dimers propagate quite anisotropically along the surface, and become localized at Cl sites somehow to destabilize the Si-Cl bonds causing hopping of the Cl atoms. The electrons injected into a bulk band propagate in an isotropic manner and then get resonantly trapped at Si-Cl antibonding orbitals, resulting in bond destabilization and hopping of the Cl atoms.  相似文献   

3.
M. Çakmak  E. Mete 《Surface science》2007,601(18):3711-3716
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the effect of hydrogenation on the atomic geometries and the energetics of substitutional boron on the generic Si(0 0 1)-(1 × 2) surface. For a single B atom substitution corresponding to 0.5 ML coverage, we have considered two different sites: (i) the mixed Si-B dimer structure and (ii) boron substituting for the second-layer Si to form Si-B back-bond structure, which is energetically more favorable than the mixed Si-B dimer by 0.1 eV/dimer. However, when both of these cases are passivated by hydrogen atoms, the situation is reversed and the Si-B back-bond case becomes 0.1 eV/dimer higher in energy than the mixed Si-B dimer case. For the B incorporation corresponding to 1 ML coverage, among the substitutional cases, 100% interdiffusion into the third layer of Si and 50% interdiffusion into the second layer of Si are energetically similar and more favorable than the other cases that are considered. However, when the surface is passivated with hydrogen, the B atoms energetically prefer to stay at the third layer of the Si substrate.  相似文献   

4.
It has been a common belief that the one-dimensional structures observed by STM at low coverage of Pb on Si(1 0 0) are buckled Pb-Pb dimer chains. However, using first-principles density functional calculations, we found that it is energetically favorable for Pb adatoms to intermix with Si atoms to form mixed dimer chains on Si(1 0 0), instead of Pb-Pb dimer chains as assumed in previous studies. Up to a Pb coverage of 0.125 ML, mixed PbSi dimer chain is 0.19 eV per Pb atom lower in energy than Pb dimer chain.  相似文献   

5.
This study investigates ultra-thin potassium chloride (KCl) films on the Si(1 0 0)-2 × 1 surfaces at near room temperature. The atomic structure and growth mode of this ionic solid film on the covalent bonded semiconductor surface is examined by synchrotron radiation core level photoemission, scanning tunneling microscopy and ab initio calculations. The Si 2p, K 3p and Cl 2p core level spectra together indicate that adsorbed KCl molecules at submonolayer coverage partially dissociate and that KCl overlayers above one monolayer (ML) have similar features in the valance band density of states as those of the bulk KCl crystal. STM results reveal a novel c(4 × 4) structure at 1 ML coverage. Ab initio calculations show that a model that comprises a periodic pyramidal geometry is consistent with experimental results.  相似文献   

6.
R. Koch 《Surface science》2006,600(20):4694-4701
The (2 × n) superstructure of Si(0 0 1) consists of elongated (2 × 1) reconstructed stripes separated by a dimer-vacancy line every few nanometers, thus offering a means to obtain a nanopattered Si(0 0 1) surface. Scanning tunneling microscopy (STM) investigations of Si(0 0 1) substrates that were deoxidized at 880-920 °C reveal that the formation of the (2 × n) depends strongly on the Si coverage of the topmost surface layer. It forms only in a narrow coverage window ranging from 0.6 to 0.8 ML. Systematic Monte Carlo simulations by an algorithm that combines the diffusion of monomers and dimers with the simultaneous deposition of Si onto the Si(0 0 1) surface, corroborate the STM results and suggest Si deposition as a viable alternative for introducing dimer vacancies in a well-defined manner.  相似文献   

7.
R.H. Miwa 《Surface science》2007,601(18):3707-3710
The energetic stability and the equilibrium geometry of Ge adsorption on the Si(0 0 1) surface covered with Bi nanolines were examined by ab initio total energy calculations. We find that there is an energetic preference of Ge atoms lying on the Si(0 0 1) terraces, forming Sidown-Geup mixed dimers. Further investigations reveal a repulsive interaction between the mixed dimers and the Bi nanolines, suggesting that the formation of Sidown-Geup dimers can be tailored by the presence of the Bi nanolines.  相似文献   

8.
In order to understand the atomic structure of nanostructures self-assembled on the template with one-dimensional symmetry, Bi/Si(5 5 12) system has been chosen and Bi-adsorption steps have been studied by STM. With Bi adsorption, the clean Si(5 5 12) is transformed to (3 3 7) terraces with disordered boundary due to mismatched periodicities between (3 3 7) and (5 5 12), and Bi-dimer rows are formed inside the (3 3 7) unit as follows: Initially, when Bi atoms are deposited at the adsorption temperature of about 450 °C, they selectively replace Si-dimers and Si-adatoms and form adsorbed Bi-dimers and Bi-adatoms, respectively. If additional Bi is supplied, the Bi-dimers adsorb on the Bi-dimers and Bi-adatoms in the first layer. These adsorbed dimers in the second layer are facing each other to form a Bi-dimer pair with relatively stable p3bonding. Finally, a single Bi-dimer adsorbs above the Bi-dimer pair in the second layer, at which point the Bi layer thickness saturates. It has been concluded that the Bi-dimer pair with stable p3 bonding is the composing element in the second layer and such site-selective adsorption is possible due to the substrate-strain relaxation through inserting Bi-buffer layer limited to specific sites of the substrate.  相似文献   

9.
Using the pseudopotential method and the local density approximation of density functional theory we have investigated the stability, atomic geometry, and electronic states for low-coverage Ca adsorbates on the Si(001) surface within the (2 × n) reconstructions with n = 2, 3, 4, 5. Our total energy calculations suggest that the (2 × 4) phase represents the most energetically stable structure with the Ca coverage of 0.375 ML. Within this structural model, each Ca atom is found to form a bridge with the inner two Si–Si dimers. The inner Si–Si dimers become elongated and symmetric (untilted). The band structure calculation indicates that the system is semiconducting with a small band gap. Significant amount of charge transfer from the Ca atoms to neighbouring Si atoms has been concluded by analysing the electronic charge density and simulation of scanning tunnelling microscopy images. The highest occupied and lowest unoccupied electronic states are found to arise from the inner and outer Si–Si dimer components, respectively.  相似文献   

10.
Density functional theory has been applied to a study of the electronic structure of the ideally-terminated, relaxed and H-saturated (0 0 0 1) surfaces of β-Si3N4 and to that of the bulk material. For the bulk, the lattice constants and atom positions and the valence band density of states are all in good agreement with experimental results. A band gap of 6.7 eV is found which is in fair accord with the experimental value of 5.1-5.3 eV for H-free Si3N4. Using a two-dimensionally-periodic slab model, a π-bonding interaction is found between threefold-coordinated Si and twofold-coordinated N atoms in the surface plane leading to π and π* surface-state bands in the gap. A surface-state band derived from s-orbitals is also found in the gap between the upper and lower parts of the valence band. Relaxation results in displacements of surface and first-underlayer atoms and to a stronger π-bonding interaction which increases the π-π* gap. The relaxed surface shows no occupied surface states above the valence band maximum, in agreement with recent photoemission data for a thin Si3N4 film. The π* band, however, remains well below the conduction band minimum (but well above the Fermi level). Adsorbing H at all dangling-bond sites on the ideally-terminated surface and then relaxing the surface and first underlayer leads to smaller, but still finite, displacements in comparison to the clean relaxed surface. This surface is more stable, by about 3.67 eV per H, than the clean relaxed surface.  相似文献   

11.
D. Kaminski 《Surface science》2005,575(3):233-246
Using surface X-ray diffraction, we have determined the structure of three different sub-monolayer phases of Bi on Cu(1 1 1). In contrast to an early report, we find that at a coverage of 1/3 monolayer a substitutional surface alloy is formed with a (√3 × √3)R30° unit cell. For increasing coverage, de-alloying occurs, leading to an overlayer structure at a coverage of 0.5 ML in which the Bi atoms form zigzag chains. The surface contains three domains of this phase. Finally, at a slightly higher coverage of 0.53 ML, the unit cell is compressed in one direction, leading to a uniaxial-incommensurate phase with three rotational domains.The structure determination includes relaxations in the topmost layers and therefore allows a detailed comparison of the most important bond distances. This shows that an increased charge density of the Cu(1 1 1) surface is the main driving force for the different phases.  相似文献   

12.
Stilbene (1,2-diphenylethylene) has shown an intriguing isomerisation behavior and may serve as a model system for “molecular switches” incorporating a CC double bond. To evaluate the possible use of such molecules as molecular switches on semiconductor surfaces, the adsorption of cis- and trans-stilbene on Si(1 0 0) has been investigated. Identification of both isomers is achieved by differences in adsorption geometry as revealed by NEXAFS, and differences in electronic structure in the occupied and unoccupied molecular orbitals. For both isomers, bonding takes place via the CC double bond to the Si dimer atoms allowing for free movement of the aromatic rings, a necessary prerequisite for photoinduced isomerisation on the surface. Our experimental results agree well with theoretical calculations.  相似文献   

13.
Casey C. Finstad 《Surface science》2006,600(17):3363-3374
The dissociation of NH3 on a Si(1 0 0) surface activated with Cl atoms was investigated using X-ray photoelectron spectroscopy. Gas phase UV-Cl2 (0.1-10 Torr Cl2 for 10-600 s under 1000 W Xe lamp illumination) completely replaced the H-termination on aqueous-cleaned Si(1 0 0) with 0.82 ± 0.06 ML of Cl at 298 K. A single spin-orbit split Cl 2p doublet indicated that the Cl atoms were bound to Si dimer atoms, forming silicon monochloride (Cl-Si-Si-Cl). Exposing the Cl-terminated surface at 348 K to NH3 (1-1000 Torr for 5-60 min) replaced one Cl atom with one N atom up to a coverage of 0.33 ± 0.02 ML. Cl atoms lowered the activation energy barrier for reaction to form a primary amine (Si-NH2). Oxygen was coadsorbed due to competition by H2O contamination. The presence of Cl on the surface even after high NH3 exposures is attributed to site blocking and electrostatic interactions among neighboring Cl-Si-Si-NH2 moieties. The results demonstrate a low temperature reaction pathway for depositing N-bearing molecules on Si surfaces.  相似文献   

14.
The adsorption of Ca metals onto a Si(1 1 0) surface has been theoretically investigated by first-principle total-energy calculations. We employed a local density approximation of the density functional theory as well as a pseudopotential theory to study the atomic and electronic properties of the Ca/Si(1 1 0) structure. The (1×1) and (2×1) surface structures were considered for Ca coverages of 0.5 and 0.25 ML, respectively. It is found that the (1×1) phase is not expected to occur even for rich Ca regime. It was found that Ca adatoms are adsorbed on top of the surface and form a bridge with the uppermost Si atoms. The most stable structure of Ca/Si(1 1 0)-(2×1) surface produces a semiconducting surface band structure with a direct band gap that is slightly smaller than that of the clean surface. We have observed one filled and two empty surface states in the gap region. These empty surface states originated from the uppermost Si dangling bond states and the Ca 4s states. Furthermore, the Ca-Si bonds have an ionic nature with almost complete charge transfer from Ca to the surface Si atoms. The structural parameters of the ground state atomic configuration are detailed and compared with the available results of metal-adsorbed Si(1 1 0) surface, Ca/Si(0 0 1), and Ca/Si(1 1 1) structures.  相似文献   

15.
We present results of ab initio calculations of structural, electronic and vibrational properties of the Ge(0 0 1) surface covered with a monolayer of arsenic. The fully occupied πu bonding and πg antibonding electronic states due to the As-As dimer formation are quite close in energy and their ordering is same as that found on the Si(0 0 1) surface. Using our calculated atomic and electronic structures, surface lattice dynamics was studied by employing a linear response approach based on density functional perturbation theory. A comparison of the phonon spectrum of the Ge(0 0 1)/As(2 × 1) surface with that of the clean Ge(0 0 1)(2 × 1) surface indicates the presence of several new characteristic phonon modes due to adsorption of As atoms.  相似文献   

16.
Using a first-principles pseudopotential technique, we have investigated the adsorption of CH3OH on the Si(0 0 1) surface. We have found that, in agreement with the overall experimental picture, the most probable chemisorption path for methanol adsorption on silicon (0 0 1) is as follows: the gas phase CH3OH adsorbs molecularly to the electrophilic surface Si atom via the oxygen atom and then dissociates into Si-OCH3 and H, bonded to the electrophilic and nucleophilic surface silicon dimer atoms, respectively. Other possible adsorption models and dissociation paths are also discussed. Our calculations also suggest that the most probable methanol coverage is 0.5 ML, i.e., one molecule per Si-Si dimer, in agreement with experimental evidences. The surface atomic and electronic structures are discussed and compared to available theoretical and experimental data. In addition, we propose that a comparison of our theoretical STM images and calculated vibrational modes for the adsorbed systems with detailed experimental investigations could possibly confirm the presented adsorption picture.  相似文献   

17.
M. Çakmak  Z. Aydu?an 《Surface science》2007,601(6):1489-1493
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the effect of hydrogenation on the atomic geometries and energetics of substitutional phosphorus (P) on the generic Si(0 0 1)-(1 × 2) surface. For the 0.5 ML coverage of P, we have considered three different substitutional sites: (i) the mixed Si-P dimer structure (i.e., the P-nondiffused case), (ii) P-interdiffused to the second layer Si (i.e., intermixed P-Si bond structure) and (iii) P-interdiffused to the third layer Si. We have found that the mixed Si-P dimer structure is 0.79 eV/dimer energetically more favorable than the P-interdiffused case. However, for the hydrogenation of above cases, we have found that the situation is reversed and the interdiffused case is 0.3 eV/dimer energetically more favorable than the P-nondiffused case. Reductions in the number of P-Si is identified as a contributing factor which determines energetically the stable structures during P on Si(0 0 1).  相似文献   

18.
Na adsorption at room temperature causes the Na/Si(1 1 1)3 × 1 surface with Na coverage of 1/3 monolayer (ML) to transit into the Na/Si(1 1 1)6 × 1 surface at 1/2 ML and sequentially into the Na/Si(1 1 1)3 × 1 surface at 2/3 ML. The phase transition was studied by Si 2p core-level photoemission spectroscopy. The detailed line shape analysis of the Si 2p core-level spectrum of the Na/Si(1 1 1)3 × 1 surface (2/3 ML) is presented and compared to the Na/Si(1 1 1)3 × 1 surface (1/3 ML) which is composed of Si honeycomb chain-channel structures. This suggests that as additional Na atoms form atomic chains resulting in the Na/Si(1 1 1)3 × 1 surface (2/3 ML), the inner atoms of the Si honeycomb chain-channel structure is buckled due to the additional Na atoms.  相似文献   

19.
Experimental observations indicate that removing bridging oxygen atoms from the TiO2 rutile (1 1 0) surface produces a localised state approximately 0.7 eV below the conduction band. The corresponding excess electron density is thought to localise on the pair of Ti atoms neighbouring the vacancy; formally giving two Ti3+ sites. We consider the electronic structure and geometry of the oxygen deficient TiO2 rutile (1 1 0) surface using both gradient-corrected density functional theory (GGA DFT) and DFT corrected for on-site Coulomb interactions (GGA + U) to allow a direct comparison of the two methods. We show that GGA fails to predict the experimentally observed electronic structure, in agreement with previous uncorrected DFT calculations on this system. Introducing the +U term encourages localisation of the excess electronic charge, with the qualitative distribution depending on the value of U. For low values of U (?4.0 eV) the charge localises in the sub-surface layers occupied in the GGA solution at arbitrary Ti sites, whereas higher values of U (?4.2 eV) predict strong localisation with the excess electronic charge mainly on the two Ti atoms neighbouring the vacancy. The precise charge distribution for these larger U values is found to differ from that predicted by previous hybrid-DFT calculations.  相似文献   

20.
We have studied the individual adsorption of Mn and Bi, and their coadsorption on Cu(0 0 1) by low-energy electron diffraction (LEED). For Mn, we have determined the c(2 × 2) structure formed at 300 K, whose structure had been determined by several methods. We reconfirmed by a tensor LEED analysis that it is a substitutional structure and that a previously reported large corrugation (0.30 Å) between substitutional Mn and remaining surface Cu atoms coincides perfectly with the present value. In the individual adsorption of Bi, we have found a c(4 × 2) structure, which is formed by cooling below ∼250 K a surface prepared by Bi deposition of ∼0.25 ML coverage at 300 K where streaky half-order LEED spots appear. The c(4 × 2) structure has been determined by the tensor LEED analysis at 130 K and it is a substitutional structure. In the coadsorption, we found a c(6 × 4) structure, which has been determined by the tensor LEED analysis. It is very similar to the previously determined structure of the c(6 × 4) formed by coadsorption of Mg and Bi, and embedded MnBi4 clusters are arranged in the top Cu layer instead of MgBi4. Large lateral displacements of Bi atoms in the c(6 × 4)-(Mn + Bi) suggest that the Mn atoms undergo the size-enhancement caused by their large magnetic moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号