首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonance-enhanced multiphoton ionization (REMPI) has been applied to study the n → 3p Rydberg transition of pyrimidine (jet-cooled sample and mass resolved spectrum). Only the one component, the 3pz(B2), appears in the (2 + 1) REMPI and the active vibrations are ν6a = 622, ν1 = 946, and ν9a = 1116 cm−1. The symmetry of the state was determined by polarization measurements (linear, circular polarization). The first (π,n) 3B1 triplet state appears as a one-photon resonance in the three-photon ionization process.  相似文献   

2.
The crystal structural, magnetic and electrical transport properties of double perovskite CeKFeMoO6 have been investigated. The crystal structure of the compound is assigned to the monoclinic system with space group P21/n and its lattice parameters are a=0.55345(3) nm, b=0.56068(2) nm, c=0.78390(1) nm, β=89.874(2). The divergence between zero-field-cooling and field-cooling M-T curves demonstrates the anisotropic behavior. The Curie temperature measured from Cp-T curve is about 340 K. Isothermal magnetization curve shows that the saturation and spontaneous magnetization are 1.90 and 1.43 μB/f.u. at 300 K, respectively. The electrical behavior of the sample shows a semiconductor. The electrical transport behavior can be described by variable range hopping model. Large magnetoresistance, −0.88 and −0.18, can be observed under low magnetic field, 0.5 T, at low and room temperature, respectively.  相似文献   

3.
The second and third-order Brugger elastic constants are obtained for liquids and ideal gases having an initial hydrostatic pressure p1. For liquids the second-order elastic constants are C11 = A + p1, C12 = A − p1, and the third-order constants are C111 = −(B + 5A + 3p1), C112 = −(B + A − p1), and C123 = A − B − p1, where A and B are the Beyer expansion coefficients in the liquid equation of state. For ideal gases the second-order constants are C11 = p1γ + p1, C12 = p1γ − p1, and the third-order constants are C111 = −p1(γ2 + 4γ + 3), C112 = −p1(γ2 − 1), and C123 = −p1 (γ2 − 2γ + 1), where γ is the ratio of specific heats. The inequality of C11 and C12 results in a nonzero shear constant C44 = (1/2)(C11 − C12) = p1 for both liquids and gases. For water at standard temperature and pressure the ratio of terms p1/A contributing to the second-order constants is approximately 4.3 × 10−5. For atmospheric gases the ratio of corresponding terms is approximately 0.7. Analytical expressions that include initial stresses are derived for the material ‘nonlinearity parameters’ associated with harmonic generation and acoustoelasticity for fluids and solids of arbitrary crystal symmetry. The expressions are used to validate the relationships for the elastic constants of fluids.  相似文献   

4.
High resolution infrared spectra of 121SbHD2 and 123SbHD2 have been studied in the region of ν1, the Sb-H stretching fundamental, from 1780 to 1990 cm−1. The 2ν1 stretching overtone band of 123SbHD2, located in the 3640-3790 cm−1 range, has also been investigated. The SbHD2 molecule is an asymmetric rotor of Cs symmetry with the asymmetry parameter κ = 0.61. The ν1 band is of hybrid type, formed by strong C-type and weak B-type transitions, and almost unperturbed. For 123SbHD2, 2092 transitions have been assigned: 70% of these belong to the C component, the other 30% are of B-type. The assigned transitions have been fitted using a Watson type S-reduced Hamiltonian in the IIIl representation, with a standard deviation of the fit σ = 0.45 × 10−3 cm−1. In order to determine the ground state parameters all possible ground state combination differences (GSCD) have been generated from the ν1 transitions. In total, 3942 GSCD up to J = 27,  = 25, and  = 20 have been fitted with σ = 0.52 × 10−3 cm−1. Only C-type transitions have been observed in the weak 2ν1 overtone band. The 556 assigned transitions have been fitted with σ = 2.6 × 10−3 cm−1 using the same Hamiltonian as for ν1. In the ν1 band of 121SbHD2 771 C-type transitions have been assigned, and the v1=1 spectroscopic constants obtained from a fit with σ = 0.70 × 10−3 cm−1. Using 618 GSCD the ground state spectroscopic constants of 121SbHD2 have been derived with σ = 1.0 × 10−3 cm−1. The molecular parameters for the ground and the v1=1 states of the two isotopologues agree well. The quartic theoretical ab initio force field of SbH3 has been used to predict all relevant spectroscopic parameters for 123SbHD2, 121SbHD2, 123SbH2D, and 121SbH2D. Relations between the harmonic frequencies and between the anharmonicity constants obtained in the expanded local mode theory, for the XH3 → XH2D/XHD2 isotopic substitution, have been compared with those obtained in the present study.  相似文献   

5.
We study here the Pippard relations modified spectroscopically for the NH4Cl crystal. By relating the specific heat CP to the frequency shift (1/ν)(∂ν/∂T)P for the disorder-allowed Raman modes of ν7 (93 cm−1) and ν5 (144 cm−1) in NH4Cl close to the tricritical point (P=1.6 kbar, TC=257 K), we show that the first Pippard relation is valid for this crystalline system.  相似文献   

6.
Nickelocene [bis(η5-cyclopentadienyl)nickel: Ni(C5H5)2, electron spin S=1, the ground state configuration 3A2g] is paramagnetic and belongs to a typical molecule-based magnet. Heat capacities of nickelocene have been measured at temperatures in the 3−320 K range by adiabatic calorimetry. By comparing with those of diamagnetic ferrocene crystal, a small heat capacity peak centered at around 15 K and a sluggish hump centered at around 135 K were successfully separated. The low-temperature peak at 15 K caused by the spin is well reproduced by the Schottky anomaly due to the uniaxial zero-field splitting of the spin S=1 with the uniaxial zero-field splitting parameter D/k=45 K (k: the Boltzmann constant). The magnetic entropy 9.7 J K−1 mol−1 is substantially the same as the contribution from the spin-manifold R ln 3=9.13 J K−1 mol−1 (R: the gas constant). The sluggish hump centered at around 135 K arises from rotational disordering of the cyclopentadienyl rings of nickelocene molecule. The enthalpy and entropy gains due to this anomaly are 890 J mol−1 and 6.9 J K−1 mol−1, respectively. As the hump spreads over a wide temperature region, separation of the hump from the observed heat capacity curve involves a little bit ambiguity. Therefore, these values should be regarded as being reasonable but tentative. The present entropy gain is comparable with 5.5 J K−1 mol−1 for the sharp phase transition at 163.9 K of ferrocene crystal. This fact implies that although the disordering of the rings likewise takes place in both nickelocene and ferrocene, it proceeds gradually in nickelocene and by way of a cooperative phase transition in ferrocene. A reason for this originates in loose molecular packing in nickelocene crystal. Molar heat capacity and the standard molar entropy of nickelocene are larger than those of ferrocene beyond the mass effect over the whole temperature region investigated. This fact provides with definite evidences for the loose molecular packing in nickelocene crystal.  相似文献   

7.
Magnetic properties of four sigma-phase Fe100−xVx samples with 34.4?x?55.1 were investigated by Mössbauer spectroscopy and magnetic measurements in the temperature interval 4.2-300 K. Four magnetic quantities, viz. hyperfine field, Curie temperature, magnetic moment and susceptibility, were determined. The sample containing 34.4 at% V was revealed to exhibit the largest values found up to now for the sigma-phase for average hyperfine field, 〈B〉=12.1 T, average magnetic moment per Fe atom, 〈μ〉=0.89 μB, and Curie temperature, TC=315.3 K. The quantities were shown to be strongly correlated with each other. In particular, TC is linearly correlated with 〈μ〉 with a slope of 406.5 K/μB, as well as 〈B〉 is so correlated with 〈μ〉, yielding 14.3 T/μB for the hyperfine coupling constant.  相似文献   

8.
Dielectric permittivities (ε′,ε″) have been measured as functions of temperature (140-535 K) and frequency (500 Hz-2.0 MHz) in a (001)-cut Pb(In1/2Nb1/2)0.7Ti0.3O3 (PINT30%) single crystal grown by the modified Bridgman method with Pb(Mg1/3Nb2/3)0.71Ti0.29O3 (PMNT29%) seed crystal. A diffused phase transition was observed in the temperature region of ∼430-460 K with strong frequency dispersion. Above the Burns temperature TB≅510 K, the dielectric permittivity was found to follow the Curie-Weiss behavior, ε′=C/(TTC), with parameters C=3.9×105 and TC=472 K. Below TB≅510 K, polar nanoclusters are considered to appear and are responsible for the diffused dielectric anomaly. Optical transmission, refractive indices, and the Cauchy equations were obtained as a function of wavelength at room temperature. The unpoled crystal shows almost no birefringence, indicating that the average structural symmetry is optically isotropic. The crystal exhibits a broad transparency in the wavelength range of ∼0.4-6.0 μm.  相似文献   

9.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

10.
The 2,3-13C2 isotopomer of butadiene was synthesized, and its fundamental vibrational fundamentals were assigned from a study of its infrared and Raman spectra aided with quantum chemical predictions of frequencies, intensities, and Raman depolarization ratios. For two C-type bands in the high-resolution (0.002 cm−1) infrared spectrum, the rotational structure was analyzed. These bands are for ν11 (au) at 907.17 cm−1 and for ν12 (au) at 523.37 cm−1. Ground state and upper state rotational constants were fitted to Watson-type Hamiltonians with a full quartic set of centrifugal distortion constants and two sextic ones. For the ground state, A0 = 1.3545088(7) cm−1, B0 = 0.1469404(1) cm−1, and C0 = 0.1325838(2)  cm−1. The small inertial defects of butadiene and two 13C2 isotopomers, as well as for five deuterium isotopomers as previously reported, confirm the planarity of the s-trans rotamer of butadiene.  相似文献   

11.
The gas phase infrared emission spectrum of the A3Σ-X3Π electronic transition of SiC has been observed using a high resolution Fourier transform spectrometer. Three bands ν′ − ν″ = 0-1, 0-0, and 1-0 have been observed in the 2770, 3723, and 4578 cm−1 regions, where the 0-1 and 0-0 bands were observed for the first time. The SiC radical was generated by a dc discharge in a flowing mixture of hexamethyl disilane [(CH3)6Si2] and He. A total of 1074 rotational transitions assigned to the 0-1, 0-0, and 1-0 bands have been combined in a simultaneous analysis with previously reported pure rotational data to determine the molecular constants for SiC in the two electronic states. The principal equilibrium molecular constants for the A3Σ state are: Be = 0.6181195(18) cm−1, αe = 0.0051921(20) cm−1, re = 1.8020884(26) Å, and Te = 3773.31(17) cm−1, with one standard deviation given in parentheses. The effect of a perturbation was recognized between the ν = 4 level of X3Π and the ν = 0 level of A3Σ, and the analysis was carried out to determine the interaction parameter between the two states.  相似文献   

12.
The thermodynamic behavior of carbon doped MgB2 has been studied using a rigid ion model (RIM). The model potential consists of the long-range Coulomb, the short-range repulsive and the van der Waals interactions. This model has successfully explained the cohesive and thermodynamic properties of Mg(B1−xCx)2 (x=0.0, 0.02, 0.05, 0.075, 0.1, 0.2). The properties studied are the cohesive energy, molecular force constant, Restrahlen frequency, compressibility, Debye temperature and Gruneisen parameter. Our results on Restrahlen frequency and Debye temperature are in reasonably good agreement with the available experimental data. In addition, we have computed the specific heat Cp for Mg(B1−xCx)2 (x=0.2) as a function of temperature T in the range 16 K?T?1000 K. We have also shown the variation of specific heat Cp with doping concentration at room temperature (300 K). The calculated specific heat Cp for Mg(B1−xCx)2 (x=0.2) in the temperature range 16 K?T?22 K for which experimental results are available, agrees pretty well with the experimental data.  相似文献   

13.
The absorption spectrum of ozone, 16O3, has been recorded by CW-cavity ring down spectroscopy in the 6625-6830 cm−1 region. The typical sensitivity of these recordings (αmin ∼ 3 × 10−10 cm−1) allows observing very weak transitions with intensity down to 2 × 10−28 cm/molecule. 483 and 299 transitions have been assigned to the 2ν1 + 3ν2 + 3ν3A-type band and to the 2ν1 + 4ν2 + 2ν3B-type band, respectively, which are the highest frequency bands of ozone recorded so far under high resolution. Rovibrational transitions with J and Ka values up to 46 and 12, respectively, could be assigned. Despite well-known difficulties to correctly reproduce the energy levels not far from the dissociation limit, it was possible to determine the parameters of an effective Hamiltonian which includes six vibrational states, four of them being dark states. The line positions analysis led to an rms deviation of 8.5 × 10−3 cm−1 while the experimental line intensities could be satisfactorily reproduced. Additional experiments in the 5970-6021 cm−1 region allows detecting the (233) ← (010) hot band reaching the same upper state as the preceding cold band. From the effective parameters of the (233) state just determined and those of the (010) level available in the literature, 329 transitions could be assigned and used for a further refinement of the rovibrational parameters of the effective Hamiltonian leading to a value of 7.6 × 10−3 cm−1 for the global rms deviation. The complete list of the experimentally determined rovibrational energy levels of the (233), (242), and (520) states is given. The determined effective Hamiltonian and transition moment operators allowed calculating a line list (intensity cut off of 10−28 cm/molecule at 296 K), available as Supplementary material for the 6590-6860 and 5916-6021 cm−1 regions. The integrated band strength values are 1.75 × 10−24 and 4.78 × 10−25 cm/molecule at 296 K for the 2ν1 + 3ν2 + 3ν3A-type band and to the 2ν1 + 4ν2 + 2ν3B-type band, respectively, while the band intensity value of the (233) ← (010) is estimated to be 1.03 × 10−24 cm/molecule.  相似文献   

14.
The jet-cooled spectrum of pentafluoroethane (C2HF5) has been recorded between 1100 and 1325 cm−1 at a resolution of 0.0022 cm−1. A rotational temperature of approximately 10 K was achieved by expanding 50 Torr of C2HF5 in 500 Torr of helium. Transitions belonging to five different fundamental vibrations have been assigned and fit to a Watson Hamiltonian: the ν3 band at 1309.880494(189) cm−1, ν4 at 1200.734645(67) cm−1, ν5 at 1142.78147(33) cm−1, ν13 at 1223.334098(115) cm−1, and ν14 at 1147.394185(163) cm−1. The fit of the ν4 band has an rms deviation of 0.000436 cm−1 compared to the uncertainty in the experimental line position of 0.0002 cm−1. Satisfactory fits were achieved for the other four bands (ν3, ν5, ν13, ν14) at this cold temperature, with most of the centrifugal distortion constants fixed at the ground state values. Joint fits with previous work were attempted for the ν4 and ν13, successfully in the former case and unsuccessfully in the latter.  相似文献   

15.
The Fourier transform infrared (FTIR) spectrum of the ν3 band of C2H3D was measured at an unapodized resolution of 0.0063 cm−1 in the 1240-1340 cm−1 region. Rovibrational constants for the upper state (ν3 = 1) up to five quartic and two sextic centrifugal distortion terms had been obtained by assigning and fitting a total of 1037 infrared transitions using a Watson’s A-reduced Hamiltonian in the Ir representation. The root-mean-square deviation of the fit was 0.00051 cm−1. The ground state rovibrational constants were also determined by a fit of 674 combination differences together with 21 microwave frequencies from the present infrared measurements with a root-mean-square deviation of 0.00040 cm−1. The upper state (ν3 = 1) and ground state rovibrational constants of C2H3D represent the most accurate values obtained so far. The A-type ν3 band, centred at 1288.788826 ± 0.000044 cm−1 was found to be relatively free from local frequency perturbations. From the ν3 = 1 rovibrational constants obtained, the inertial defect Δ3 was 0.1619724 ± 0.0000001 μÅ2.  相似文献   

16.
The absorption spectrum of the ν6 band of C2H3D centered near 1125.27674 cm−1 in the 1100-1250 cm−1 region was recorded with an unapodized resolution of 0.0063 cm−1 using a Fourier transform infrared (FTIR) spectrometer. A total of 947 infrared transitions of the A-B hybrid-type band were assigned and fitted to upper-state (ν6 = 1) rovibrational constants using a Watson’s A-reduced Hamiltonian in the Ir representation up to eighth-order centrifugal distortion terms. The b-type infrared transitions of the band were analyzed for the first time. The root-mean-square deviation of the fit was 0.00062 cm−1. The ground-state rovibrational constants up to eighth-order terms were also obtained by a fit of 617 combination differences from the present infrared measurements, simultaneously with 21 microwave frequencies with a root-mean-square deviation of 0.00055 cm−1. From this work, the upper-state (ν6 = 1) and ground-state constants of C2H3D were derived with the highest accuracy, so far. The a- and b-type transitions of the hybrid ν6 band were found to be relatively free from local frequency perturbations. The ratio of the a- to b-type vibrational dipole transition moments (μa/μb) was found to be 1.05 ± 0.10. From the ν6 = 1 rovibrational constants obtained, the inertial defect Δ6 was calculated to be 0.3570 ± 0.0008 μÅ2.  相似文献   

17.
Infrared spectra of bicyclo[1.1.1]pentane (C5H8) have been recorded at a resolution (0.0015 cm−1) sufficient to resolve for the first time individual rovibrational lines. This initial report presents the ground state constants for this molecule determined from the detailed analysis of three of the ten infrared-allowed bands, ν14(e′) at 540 cm−1, ν17 (a2″) at 1220 cm−1, ν18(a2″) at 832 cm−1, and a partial analysis of the ν11(e′) band at 1237 cm−1. The upper states of transitions involving the lowest frequency mode, ν14(e′), show no evidence of rovibrational perturbations but those for the ν17 and ν18 (a2″) modes give clear indication of Coriolis coupling to nearby e′ levels. Accordingly, ground state constants were determined by use of the combination-difference method for all three bands. The assigned frequencies provided over 3300 consistent ground state difference values, yielding the following constants for the ground state (in units of cm−1): B0 = 0.2399412(2), DJ = 6.024(6) × 10−8, DJK = −1.930(21) × 10−8. For the unperturbed ν14(e′) fundamental, more than 3500 transitions were analyzed and the band origin was found to be at 540.34225(2) cm−1. The numbers in parentheses are the uncertainties (two standard deviations) in the values of the constants. The results are compared with those obtained previously for [1.1.1]propellane and with those computed at the ab initio anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set.  相似文献   

18.
Heat capacities of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its radical-ion salt NH4-TCNQ have been measured at temperatures in the 12-350 K range by adiabatic calorimetry. A λ-type heat capacity anomaly arising from a spin-Peierls (SP) transition was found at 301.3 K in NH4-TCNQ. The enthalpy and entropy of transition are ΔtrsH=(667±7) J mol−1 and ΔtrsS=(2.19±0.02) J K−1 mol−1, respectively. The SP transition is characterized by a cooperative coupling between the spin and the phonon systems. By assuming a uniform one-dimensional antiferromagnetic (AF) Heisenberg chains consisting of quantum spin (S=1/2) in the high-temperature phase and an alternating AF nonuniform chains in the low-temperature phase, we estimated the magnetic contribution to the entropy as ΔtrsSmag=0.61 J K−1 mol−1 and the lattice contribution as ΔtrsSlat=1.58 J K−1 mol−1. Although the total magnetic entropy expected for the present compound is R ln 2 (=5.76 J K−1 mol−1), a majority of the magnetic entropy (∼4.6 J K−1 mol−1) persists in the high-temperature phase as a short-range-order effect. The present thermodynamic investigation quantitatively revealed the roles played by the spin and the phonon at the SP transition. Standard thermodynamic functions of both compounds have also been determined.  相似文献   

19.
Fourier transform spectra of mono-13C ethylene have been recorded in the 8.4-14.3-μm spectral region (700-1190 cm−1) using a Bruker 120 HR interferometer at a resolution of 0.0017 cm−1 allowing the extensive study of the set of resonating states {101, 81, 71, 41, 61}. Due to the high resolution available as well as the extended spectral range involved in this study, a much larger set of line assignments are now available. The present analysis has lead to the determination of more accurate spectroscopic constants, including interaction constants, than were obtained in earlier studies. In particular, the following band centers were derived: ν0(ν10) = 825.40602(30) cm−1, ν0(ν8) = 932.19572(15) cm−1, ν0(ν7) = 937.44452(10) cm−1, ν0(ν4) = 1025.6976(14) cm−1. Finally a synthetic spectrum was generated leading to the assignment of a number of 13C12CH4 lines observed in an earlier heterodyne spectroscopic study.  相似文献   

20.
The weak 2ν3 overtone band of the three isotopomers of cyanogen iodide, I12C14N, I13C14N, and I12C15N, has been recorded in the range from 4200 to 4400 cm−1 with a resolution of 0.02 cm−1 using a Fourier transform infrared spectrometer. The following band origins have been determined from the analysis of the spectra: ν0 (I12C14N)=4332.8368 cm−1, ν0 (I13C14N)=4235.7355 cm−1, and ν0 (I12C15N)=4274.2851 cm−1. This allowed us to achieve complete knowledge of the energies for all levels of ICN corresponding to double vibrational excitation. An improved evaluation of the quartic force field of cyanogen iodide has been performed using the new data obtained together with those already known from previous works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号