首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferromagnetic shape memory alloy with nominal composition Co37Ni34Al29 is investigated by transport and magnetic measurements. The anomaly due to the martensitic transition is observed around 130-210 K. The thermal hysteresis, observed due to martensitic transition in the dc magnetization versus temperature data, gets suppressed at higher applied field. Below 50 K, magnetization varies with temperature perfectly as T3/2, which signifies that spin wave excitations are largely responsible for thermal demagnetization. The sample shows small negative magneto-resistance, which varies non-monotonically with temperature showing largest value at around 200 K.  相似文献   

2.
Magnetic properties and magnetic entropy change ΔS were investigated in Heusler alloy Ni43Mn43Co3Sn11. With decreasing temperature this alloy undergoes a martensitic structural transition at TM=188 K. The incorporation of Co atoms enhances ferromagnetic exchange for parent phases. Austenitic phase with cubic structure shows strong ferromagnetic behaviors with Curie temperature TCA at 346 K, while martensitic phase shows weak ferromagnetic properties. An external magnetic field can shift TM to a lower temperature at a rate of 4.4 K/T, and a field-induced structural transition from martensitic to austenitic state takes place at temperatures near but below TM. As a result, a great magnetic entropy change with positive sign appears. The size of ΔS reaches 33 J/kg K under 5 T magnetic field. More important is that the ΔS displays a table-like peak under 5 T, which is favorable for Ericsson-type refrigerators.  相似文献   

3.
A high-quality single crystal of Ce3Pt23Si11 has been grown using the Czochralski method. The crystal structure is presented and the chemical composition has been checked using an electron microprobe analyzer. Measurements of the electrical resistivity and magnetic susceptibility performed at low temperature show a ferromagnetic transition at Tc=0.44 K.  相似文献   

4.
We report the observation of giant negative magnetoresistance up to −46% at 60 kOe magnetic field in Ni1.68Co0.32Mn1.20Ga0.80 alloy, which is about 5 times larger than that reported in Ni-Mn-Ga alloys. The significant change in resistivity during martensitic transformation originates from the altered electronic structure due to the change of magnetic state. The magnetic-field-induced phase transition from partially antiferromagnetic martensite to ferromagnetic austenite is responsible for the enhanced magnetoresistance.  相似文献   

5.
Ten layers of self-assembled InMnAs quantum dots with InGaAs barrier were grown on high resistivity (1 0 0) p-type GaAs substrates by molecular beam epitaxy (MBE). The presence of ferromagnetic structure was confirmed in the InMnAs diluted magnetic quantum dots. The ten layers of self-assembled InMnAs quantum dots were found to be semiconducting, and have ferromagnetic ordering with a Curie temperature, TC=80 K. It is likely that the ferromagnetic exchange coupling of sample with TC=80 K is hole mediated resulting in Mn substituting In and is due to the bound magnetic polarons co-existing in the system. PL emission spectra of InMnAs samples grown at temperature of 275, 260 and 240 °C show that the interband transition peak centered at 1.31 eV coming from the InMnAs quantum dot blueshifts because of the strong confinement effects with increasing growth temperature.  相似文献   

6.
Single-crystals of the new ferromagnetic superconductor UCoGe have been grown. The quality of as-grown samples can be significantly improved by a heat-treatment procedure, which increases the residual resistance ratio (RRR) from ∼5 to ∼30. Magnetization M(T) and resistivity ρ(T) measurements show the annealed samples have a sharp ferromagnetic transition with a Curie temperature TC is 2.8 K. The ordered moment of 0.06 μB is directed along the orthorhombic c-axis. Superconductivity is found below a resistive transition temperature Ts=0.65 K.  相似文献   

7.
Double-layered manganite La1.4Ca1.6Mn2O7 has been synthesized using the solid-state reaction method. It had a metal-to-insulator transition at temperature TM1≈127 K. The temperature dependence of ac susceptibility showed a broad ferromagnetic transition. The two-dimensional (2D)-ferromagnetic ordering temperature (TC2) was observed as ≈245 K. The temperature dependence of its low-field magnetoresistance has been studied. The low-field magnetoresistance of double-layered manganite, in the temperature regions between TM1 and TC2, has been found to follow 1/T5. The observed behaviour of temperature dependence of resistivity and low-field magnetoresistance has been explained in terms of two-phase model where ferromagnetic domains exist in the matrix of paramagnetic regions in which spin-dependent tunneling of charge carriers occurs between the ferromagnetic correlated regions. Based on the two-phase model, the dimension of these ferromagnetic domains inside the paramagnetic matrix has been estimated as ∼12 Å.  相似文献   

8.
We have investigated the magnetic and transport properties of a new ternary intermetallic compound Pr2Pd3Si5 which forms in U2Co3Si5-type orthorhombic structure (space group Ibam). At low field (0.01 T) magnetic susceptibility exhibits an abrupt increase below 7 K and peaks at 5 K, revealing a magnetic phase transition. The onset of magnetic order is also confirmed by well defined anomalies in the specific heat and electrical resistivity data. Apart from the sharp λ-type anomaly, magnetic part of specific heat also shows a broad Schottky-type hump due to crystal field effect. Magnetoresistance data as a function of temperature exhibits a pronounced peak in paramagnetic state which could be interpreted in terms of crystal field effect and short-range ferromagnetic correlations.  相似文献   

9.
Magnetization and Hall resistivity have been measured for the Heusler alloy Co2ZrSn synthesized by the melt-spinning process. The temperature dependence of magnetization follows the spin-wave theory at a low temperature. Abnormal behaviors are observed both in resistance and Hall effect below 8 K. The present Hall resistivity measurement shows that the anomalous Hall effects coexist with normal Hall effects. The negative value of normal Hall coefficient over the whole temperature range reveals that the major charge carriers are electrons. The anomalous Hall coefficient is proportional to the zero-field resistivity, suggesting that magnetic skew scattering is the dominant mechanism in the ferromagnetic regime. The reason for the abnormity below 8 K during transport is discussed.  相似文献   

10.
The effect of doping of rare earth Pr3+ ion as a replacement of Sm3+ in Sm0.5Sr0.5MnO3 is investigated. Temperature dependent dc and ac magnetic susceptibility, resistivity, magnetoresistance measurements on chemically synthesized (Sm0.5−xPrx)Sr0.5MnO3 show various unusual features with doping level x=0.15. The frequency independent ferromagnetic to paramagnetic transition at higher temperature (∼191 K) followed by a frequency dependent reentrant magnetic transition at lower temperature (∼31 K) has been observed. The nature of this frequency dependent reentrant magnetic transition is described by a critical slowing down model of spin glasses. From non-linear ac susceptibility measurements it has been confirmed that the finite size ferromagnetic clusters are formed as a consequence of intrinsic phase separation, and undergo spin glass-like freezing below a certain temperature. There is an unusual observation of a 2nd harmonic peak in the non-linear ac susceptibility around this reentrant magnetic transition at low temperature (∼31 K). Arrott plots at 10 and 30 K confirm the existence of glassy ferromagnetism below this low temperature reentrant transition. Electronic- and magneto-transport measurements show a strong magnetic field—temperature history dependence and strong irreversibility with respect to the sweeping of magnetic field. These results are attributed to the effect of phase separation and kinetic arrest of the electronic phase in this phase separated manganite at low temperatures.  相似文献   

11.
Electrical conductivity and magnetoresistance of a series of monovalent (K) doped La1−xKxMnO3 polycrystalline pellets prepared by pyrophoric method have been reported. K doping increases the conductivity as well as the Curie temperature (TC) of the system. Curie temperature increases from 260 to 309 K with increasing K content. Above the metal-insulator transition temperature (T>TMI), the electrical resistivity is dominated by adiabatic polaronic model, while in the ferromagnetic region (50<T<TMI), the resistivity is governed by several electron scattering processes. Based on a scenario that the doped manganites consist of phase separated ferromagnetic metallic and paramagnetic insulating regions, all the features of the temperature variation of the resistivity between ∼50 and 300 K are described very well by a single expression. All the K doped samples clearly display the existence of strongly field dependent resistivity minimum close to ∼30 K. Charge carrier tunneling between antiferromagnetically coupled grains explains fairly well the resistivity minimum in monovalent (K) doped lanthanum manganites. Field dependence of magnetoresistance at various temperatures below TC is accounted fairly well by a phenomenological model based on spin polarized tunneling at the grain boundaries. The contributions from the intrinsic part arising from DE mechanism, as well as, the part originating from intergrannular spin polarized tunneling are also estimated.  相似文献   

12.
The thermomagnetic behaviour (within the temperature range 553-300 K) for the bulk composite Nd60Fe30Al10 alloy is described in terms of a transition from paramagnetic to superferromagnetic state at T=553 K, followed by a ferromagnetic ordering for T<473 K. For the superferromagnetic regime, the alloy thermomagnetic response was associated to a homogeneous distribution of magnetic clusters with mean magnetic moment and size of 1072 μB and 2.5 nm, respectively. For T<473 K, a pinning model of domain walls described properly the alloy coercivity dependence with temperature, from which the domain wall width and the magnetic anisotropy constant were estimated as being of ≈8 nm and ≈105 J/m3, typical values of hard magnetic phases. Results are supported by microstructural and magnetic domain observations.  相似文献   

13.
The experiments of electrical resistivity and thermopower on Nd0.75Sr1.25CoO4 film in the temperature range 90 K<T<310 K were carried out. The great difference in the activation energies estimated from thermopower and resistivity, a characteristic of small polarons, is observed, providing strong evidence for polaron-dominated transport mechanism in this material. Furthermore, the activation energy at intermediate-temperature region is larger than that at low-temperature region in resistivity, but it is not observed in thermopower, indicating that the energy for the creation of the carriers is slightly lower at low-temperature region than that at intermediate-temperature region. At the same time, the abrupt drop in the thermopower and the abnormal peak in the differential curve of resistivity indicate that a phase transition between a paramagnetic state and a ferromagnetic state occurs at temperature about 218 K. The positive thermopower in the whole temperature range measured suggests that the carriers are holes in this system.  相似文献   

14.
15.
敬超  陈继萍  李哲  曹世勋  张金仓 《物理学报》2008,57(7):4450-4455
利用电弧炉熔炼了Ni50Mn35In15多晶样品,根据磁性测量对其马氏体相变和磁热效应进行了系统研究.结果表明,随着温度的降低,样品在室温附近先后发生了二级磁相变与一级结构相变特征的马氏体相变,导致它的磁化强度产生突变. 同时通过低温下的磁滞回线的测量发现样品存在交换偏置行为,表明低温下马氏体相中铁磁和反铁磁共存. 此外,根据Maxwell方程,计算了样品在马氏体相变温度附近的磁熵变,当温度为309K,磁场改变5 T时,样品的磁熵变可达22.3J/kgK. 关键词: 哈斯勒合金 50Mn35In15')" href="#">Ni50Mn35In15 马氏体相变 磁热效应  相似文献   

16.
Magnetic and structural properties of a Finemet type alloy (Fe73.5Ge15.5Nb3B7Cu1) without Si and high Ge content were studied. Amorphous material was obtained by the melt spinning technique and was heat treated at different temperatures for 1 h under high vacuum to induce the nanocrystallization of the sample. The softest magnetic properties were obtained between 673 and 873 K. The role of Ge on the ferromagnetic paramagnetic transition of the as-quenched alloys and its influence on the crystallization process were studied using a calorimetric technique. Mössbauer spectroscopy was employed in the nanocrystallized alloy annealed at 823 K to obtain the composition of the nanocrystals and the amorphous phase fraction. Using this data and magnetic measurements of the as-quenched alloy, the magnetic contribution of nanocrystals to the alloy annealed at 823 K was estimated via a linear model.  相似文献   

17.
Thermal and pressure effects have been investigated on the [Fe(sal2-trien)][Ni(dmit)2] spin crossover complex by means of Mössbauer spectroscopic, calorimetric, X-ray diffraction and magnetic susceptibility measurements. The complex displays a complete thermal spin transition between the and spin states of FeIII near 245 K with a hysteresis loop of ca. 30 K. This transition is characterised by a change of the enthalpy, ΔHHL=7 kJ/mol, entropy, ΔSHL=29 J/Kmol, and the unit cell volume, ΔVHL=15.4 Å3. Under hydrostatic pressures up to 5.7 kbar the thermal transition shifts to higher temperatures by ca. 16 K/kbar. Interestingly, at a low applied pressure of 500 bar the hysteresis loop becomes wider (ca. 61 K) and the transition is blocked at ∼50% upon cooling, indicating a possible (irreversible) structural phase transition under pressure.  相似文献   

18.
Effects of the replacement of La with Ce on the electronic and magnetic properties of a layered superconductor LaFePO (Tc=∼5 K) were studied. Polycrystalline samples of CeFePO, prepared by a solid-state reaction, showed metallic conduction down to 2 K without exhibiting superconducting transition, although the resistivity decreased largely at temperatures below 30 K. Further, they showed an apparent positive magnetoresistance (MR) below ∼2 K, superposed on a negative MR. Temperature dependence of magnetic susceptibility is decomposed to a temperature-sensitive Curie-Weiss component presumably due to the Ce3+ ions with a magnetic moment of 1.98μB and a less temperature-sensitive component attributable to itinerant electrons. The magnetic interaction between Ce3+ ions and itinerant electrons in CeFePO likely suppresses the superconducting transition observed in LaFePO.  相似文献   

19.
The effect of Si/Ge ratio on resistivity and thermopower behavior has been investigated in the magnetocaloric ferromagnetic Gd5SixGe4−x compounds with x=1.7-2.3. Microstructural studies reveal the presence of Gd5(Si,Ge)4-matrix phase (5:4-type) along with traces of secondary phases (5:5 or 5:3-type). The x=1.7 and 2.0 samples display the presence of a first order structural transition from orthorhombic to monoclinic phase followed by a magnetic transition of the monoclinic phase. The alloys with x=2.2 and 2.3 display only magnetic transitions of the orthorhombic phase. A low temperature feature apparent in the AC susceptibility and resistivity data below 100 K reflects an antiferromagnetic transition of secondary phase(s) present in these compounds. The resistivity behavior study correlates with microstructural studies. A large change in thermopower of −8 μV/K was obtained at the magneto-structural transition for the x=2 compound.  相似文献   

20.
A detailed study of magnetic properties of cobaltite YBaCo2O5.5 has been performed in high (up to 35 T) magnetic fields and under hydrostatic pressure up to 0.8 GPa. The temperatures of paramagnet-ferromagnet (PM-FM) and ferromagnet-antiferromagnet (FM-AF) phase transitions and their pressure derivatives have been determined. It has been revealed that in the compound with yttrium, in contrast to those with magnetic rare earth atoms, the AF-FM field-induced magnetic phase transition is accompanied by a considerable field hysteresis below 240 K, and the magnetic field of 35 T is not sufficient to complete this transition at low temperatures. The hysteresis value depends on the magnetic field sweep rate, which considered as an evidence of magnetic viscosity that is especially strong in the region of coexistence of the FM and AF phases. High values of susceptibility for the field-induced FM phase show that Co spin state in these compounds changes in strong magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号