首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Asratian and Khachatrian proved that a connected graphG of order at least 3 is hamiltonian ifd(u) + d(v) ≥ |N(u) ∪ N(v) ∪ N(w)| for any pathuwv withuv ? E(G), whereN(x) is the neighborhood of a vertexx. We prove that a graphG with this condition, which is not complete bipartite, has the following properties:
  1. For each pair of verticesx, y with distanced(x, y) ≥ 3 and for each integern, d(x, y) ≤ n ≤ |V(G)| ? 1, there is anx ? y path of lengthn.
  2. For each edgee which does not lie on a triangle and for eachn, 4 ≤ n ≤ |V(G)|, there is a cycle of lengthn containinge.
  3. Each vertex ofG lies on a cycle of every length from 4 to |V(G)|.
This implies thatG is vertex pancyclic if and only if each vertex ofG lies on a triangle.  相似文献   

2.
The graphs considered are finite and undirected, loops do not occur. An induced subgraphI of a graphX is called animitation ofX, if
  1. the degreesd I(v)≡d X(v) (mod 2) for allvV(I)
  2. eachuV(X)?V(I) is connected with the setv(I) by an even number of edges. If the set of imitations ofX consists only ofX itself, thenX is anexclusive graph. AHamiltonian graph of degree n (abbr.:HG n) in the sense ofA. Kotzig is ann-regular graph (n>1) with a linear decomposition and with the property, that any two of the linear components together form a Hamiltonian circuit of the graph.
In the first chapter some theorems concerning exclusive graphs and Euler graphs are stated. Chapters 2 deals withHG n′ s and bipartite graphs. In chapters 3 a useful concept—theX-graph of anHG n—is defined; in this paper it is the conceptual connection between exclusive graphs andHG n′ s, since a graphG is anHG n, if all itsX-graphs are exlusive. Furthermore, some theorems onX-graphs are proved. Chapter 4 contains the quintessence of the paper: If we want to construct a newHG n F from anotherHG n G, we can consider certain properties of theX-graphs ofG to decide whetherF is also anHG n.  相似文献   

3.
LetG = (X, E) be a simple graph of ordern, of stability numberα and of connectivityk withα ≤ k. The Chvátal-Erdös's theorem [3] proves thatG is hamiltonian. We have investigated under these conditions what can be said about the existence of cycles of lengthl. We have obtained several results:
  1. IfG ≠ K k,k andG ≠ C 5,G has aC n?1 .
  2. IfG ≠ C 5, the girth ofG is at most four.
  3. Ifα = 2 and ifG ≠ C 4 orC 5,G is pancyclic.
  4. Ifα = 3 and ifG ≠ K 3,3,G has cycles of any length between four andn.
  5. IfG has noC 3,G has aC n?2 .
  相似文献   

4.
The theory of vertex-disjoint cycles and 2-factor of graphs has important applications in computer science and network communication. For a graph G, let σ 2(G):=min?{d(u)+d(v)|uv ? E(G),uv}. In the paper, the main results of this paper are as follows:
  1. Let k≥2 be an integer and G be a graph of order n≥3k, if σ 2(G)≥n+2k?2, then for any set of k distinct vertices v 1,…,v k , G has k vertex-disjoint cycles C 1,C 2,…,C k of length at most four such that v i V(C i ) for all 1≤ik.
  2. Let k≥1 be an integer and G be a graph of order n≥3k, if σ 2(G)≥n+2k?2, then for any set of k distinct vertices v 1,…,v k , G has k vertex-disjoint cycles C 1,C 2,…,C k such that:
    1. v i V(C i ) for all 1≤ik.
    2. V(C 1)∪???V(C k )=V(G), and
    3. |C i |≤4, 1≤ik?1.
Moreover, the condition on σ 2(G)≥n+2k?2 is sharp.  相似文献   

5.
In this paper, we shall prove several non-existence results for divisible difference sets, using three approaches:
  1. character sum arguments similar to the work of Turyn [25] for ordinary difference sets,
  2. involution arguments and
  3. multipliers in conjunction with results on ordinary difference sets.
Among other results, we show that an abelian affine difference set of odd orders (s not a perfect square) inG can exist only if the Sylow 2-subgroup ofG is cyclic. We also obtain a non-existence result for non-cyclic (n, n, n, 1) relative difference sets of odd ordern.  相似文献   

6.
A greedy clique decomposition of a graph is obtained by removing maximal cliques from a graph one by one until the graph is empty. It has recently been shown that any greedy clique decomposition of a graph of ordern has at mostn 2/4 cliques. In this paper, we extend this result by showing that for any positive integerp, 3≤p any clique decomposisitioof a graph of ordern obtained by removing maximal cliques of order at leastp one by one until none remain, in which case the remaining edges are removed one by one, has at mostt p-1( n ) cliques. Heret p-1( n ) is the number of edges in the Turán graph of ordern, which has no complete subgraphs of orderp. In connection with greedy clique decompositions, P. Winkler conjectured that for any greedy clique decompositionC of a graphG of ordern the sum over the number of vertices in each clique ofC is at mostn 2/2. We prove this conjecture forK 4-free graphs and show that in the case of equality forC andG there are only two possibilities:
  1. G?K n/2,n/2
  2. G is complete 3-partite, where each part hasn/3 vertices.
We show that in either caseC is completely determined.  相似文献   

7.
The purpose of this paper which is a sequel of “ Boolean planarity characterization of graphs ” [9] is to show the following results.
  1. Both of the problems of testing the planarity of graphs and embedding a planar graph into the plane are equivalent to finding a spanning tree in another graph whose order and size are bounded by a linear function of the order and the size of the original graph, respectively.
  2. The number of topologically non-equivalent planar embeddings of a Hamiltonian planar graphG is τ(G)=2 c(H)?1, wherec (H) is the number of the components of the graphH which is related toG.
  相似文献   

8.
9.
A(perfect) 2-matching in a graphG=(V, E) is an assignment of an integer 0, 1 or 2 to each edge of the graph in such a way that the sum over the edges incident with each node is at most (exactly) two. The incidence vector of a Hamiltonian cycle, if one exists inG, is an example of a perfect 2-matching. Fork satisfying 1≦k≦|V|, we letP k denote the problem of finding a perfect 2-matching ofG such that any cycle in the solution contains more thank edges. We call such a matching aperfect P k -matching. Then fork<l, the problemP k is a relaxation ofP 1. Moreover if |V| is odd, thenP 1V1–2 is simply the problem of determining whether or notG is Hamiltonian. A graph isP k -critical if it has no perfectP k -matching but whenever any node is deleted the resulting graph does have one. Ifk=|V|, then a graphG=(V, E) isP k -critical if and only if it ishypomatchable (the graph has an odd number of nodes and whatever node is deleted the resulting graph has a perfect matching). We prove the following results:
  1. If a graph isP k -critical, then it is alsoP l -critical for all largerl. In particular, for allk, P k -critical graphs are hypomatchable.
  2. A graphG=(V, E) has a perfectP k -matching if and only if for anyX?V the number ofP k -critical components inG[V - X] is not greater than |X|.
  3. The problemP k can be solved in polynomial time provided we can recognizeP k -critical graphs in polynomial time. In addition, we describe a procedure for recognizingP k -critical graphs which is polynomial in the size of the graph and exponential ink.
  相似文献   

10.
Packing seagulls     
A seagull in a graph is an induced three-vertex path. When does a graph G have k pairwise vertex-disjoint seagulls? This is NP-complete in general, but for graphs with no stable set of size three we give a complete solution. This case is of special interest because of a connection with Hadwiger’s conjecture which was the motivation for this research; and we deduce a unification and strengthening of two theorems of Blasiak [2] concerned with Hadwiger’s conjecture. Our main result is that a graph G (different from the five-wheel) with no three-vertex stable set contains k disjoint seagulls if and only if
  1. |V (G)|≥3k
  2. G is k-connected
  3. for every clique C of G, if D denotes the set of vertices in V (G)\C that have both a neighbour and a non-neighbour in C then |D|+|V (G)\C|≥2k, and
  4. the complement graph of G has a matching with k edges.
We also address the analogous fractional and half-integral packing questions, and give a polynomial time algorithm to test whether there are k disjoint seagulls.  相似文献   

11.
A forced cycleC of a graph G is a cycle in G such that G?V(C) has a unique perfect matching. A graph G is a cycle-forced graph if every cycle in G is a forced cycle. In this paper, we give a characterization of cycle-forced hamiltonian bipartite graphs.  相似文献   

12.
LetG be a finite group which is generated by a subsetS of involutions satisfying the theorem of the three reflections: Ifa,b,x,y,z ∈ S, ab ≠ 1 and ifabx,aby,abz are involutions, thenxyz ∈ S. Assume thatS contains three elements which generate a four-group. IfS contains four elements of which no three have a product of order two, then one of the following occurs.
  1. G?PGL(2,n), n≡1 (mod 2).
  2. G?PSL(2,n), n≡1 (mod 2) and n≥5.
  3. G?PSU(3,16).
  4. G/Z(G)?PSL(2,9) with ¦Z(G)¦=3.
  相似文献   

13.
New variable metric algorithms are presented with three distinguishing features:
  1. They make no line searches and allow quite arbitrary step directions while maintaining quadratic termination and positive updates for the matrixH, whose inverse is the hessian matrix of second derivatives for a quadratic approximation to the objective function.
  2. The updates fromH toH + are optimally conditioned in the sense that they minimize the ratio of the largest to smallest eigenvalue ofH ?1 H +.
  3. Instead of working with the matrixH directly, these algorithms represent it asJJ T, and only store and update the Jacobian matrix J. A theoretical basis is laid for this family of algorithms and an example is given along with encouraging numerical results obtained with several standard test functions.
  相似文献   

14.
For given finite, connected, bipartite graphG=(V,E) with distinguishedν 0V, set {fx189-1} Our main result says there is a fixedb so that whenG is a Hamming cube ({0, 1} n with the usual adjacency), andf is chosen uniformly fromF, the probability thatf takes more thanb values is at most e(n). this settles in a very strong way a conjecture of I. Benjamini, O. Häggström and E. Mossel [2]. The proof is based on entropy considerations and a new log-concavity result.  相似文献   

15.
A convex geometric graphG of ordern consists of the set of vertices of a plane convexn-gonP together with some edges, and/or diagonals ofP as edges. CallG 1-free ifG does not havel disjoint edges in convex position. We answer the following questions:
  1. What is the maximum possible number of edges ofG ifG isl-free (as a function ofn andl)?
  2. What is the minimum possible number of edges ofG ifG isl-free and saturated, i.e., ifG∪{e} is notl-free for any edge or diagonale ofP that is not, already inG..
We also fully describe the graphsG where the maximum (in (a)) or the minimum (in (b)) is attained. Then we remove the word “disjoint” from the definition of “l-free” and do the same over again. The results obtained are quite similar and closely related to the corresponding results (Turán's theorem, etc) in extremal abstract graph theory.  相似文献   

16.
We are concerned with the notion of the degree-type (D G i )i∈ω of a graphG, whereD G i is defined to be the number of vertices inG with degreei. In the first section the following results are proven:
  1. IfG is a connected, locally finite, countably infinite graph such that there exists ani so thatD G i andD G i+1 are both finite and different from 0, thenG is reconstructible.
  2. Locally finite, countably infinite graphsG, for which infinitely manyD G i are different from 0 but only finitely manyD G i are infinite, are reconstructible.
In the second section we give some results about the reconstructibility of certain locally finite countably infinite interval graphs and show that a reconstruction of a planar, infinite graph has to be planar too.  相似文献   

17.
A continuous real valued function defined on an intervalD is called crinkly iff the setf ?1(У)I is uncountable for each interval \(I \subseteqq D\) and number \(y \in (\mathop {\inf }\limits_I f,\mathop {\sup }\limits_I f)\) . The main result of the paper consists in the following assertion. Let the closed segment [0, 1] be represented as a union of four measurable, mutually nonintersecting setsE 1,Е 2,E 3,E 4. Then, for each functionH(δ) such thatH(δ)→ + ∞ andδH(δ)→0 asδ→0, there exists a crinkly functionf possessing the following five properties:
  1. a.e. onE 1:D + f(x)=D-f(x)=+∞,D + f(x)=D?f(x)=?∞;
  2. a.e. onE 2:D + f(x)=+∞,D?f(x)=?∞,D +f(x)=D-f(x)=0;
  3. a.e. onE 3:D + f(x)=?∞,D ? f(x)=+∞,D + f(x)=D?f(x)=0;
  4. a.e. onE 4:Df(x)=0;
  5. the modulus of continuityΩ off on [0, 1] satisfies $$\omega (\delta ,f,[0,1]) \leqq \delta H(\delta ).$$
  相似文献   

18.
LetH be a separable infinite-dimensional Hilbert space and letC be a normal operator andG a compact operator onH. It is proved that the following four conditions are equivalent.
  1. C +G is a commutatorAB-BA with self-adjointA.
  2. There exists an infinite orthonormal sequencee j inH such that |Σ j n =1 (Ce j, ej)| is bounded.
  3. C is not of the formC 1C 2 whereC 1 has finite dimensional domain andC 2 satisfies inf {|(C 2 x, x)|: ‖x‖=1}>0.
  4. 0 is in the convex hull of the set of limit points of spC.
  相似文献   

19.
It is shown that ifG is a permutation group on an infinite setX, andG is (k?1)-transitive but notk-transitive (wherek ≥ 5), then the following hold:
  1. G is not (k + 3)-homogeneous.
  2. IfG is (k + 2)-homogeneous, then the group induced byG on ak-subset ofX is the alternating groupA k .
  相似文献   

20.
In the absence of the axiom of choice four versions of compactness (A-, B-, C-, and D-compactness) are investigated. Typical results:
  1. C-compact spaces form the epireflective hull in Haus of A-compact completely regular spaces.
  2. Equivalent are:
  3. the axiom of choice,
  4. A-compactness = D-compactness,
  5. B-compactness = D-compactness,
  6. C-compactness = D-compactness and complete regularity,
  7. products of spaces with finite topologies are A-compact,
  8. products of A-compact spaces are A-compact,
  9. products of D-compact spaces are D-compact,
  10. powers X k of 2-point discrete spaces are D-compact,
  11. finite products of D-compact spaces are D-compact,
  12. finite coproducts of D-compact spaces are D-compact,
  13. D-compact Hausdorff spaces form an epireflective subcategory of Haus,
  14. spaces with finite topologies are D-compact.
  1. Equivalent are:
  2. the Boolean prime ideal theorem,
  3. A-compactness = B-compactness,
  4. A-compactness and complete regularity = C-compactness,
  5. products of spaces with finite underlying sets are A-compact,
  6. products of A-compact Hausdorff spaces are A-compact,
  7. powers X k of 2-point discrete spaces are A-compact,
  8. A-compact Hausdorff spaces form an epireflective subcategory of Haus.
  1. Equivalent are:
  2. either the axiom of choice holds or every ultrafilter is fixed,
  3. products of B-compact spaces are B-compact.
  1. Equivalent are:
  2. Dedekind-finite sets are finite,
  3. every set carries some D-compact Hausdorff topology,
  4. every T 1-space has a T 1-D-compactification,
  5. Alexandroff-compactifications of discrete spaces and D-compact.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号