首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ions ejected from a liquid metal ion source of an Li-Mg (10 atom %) alloy have been investigated by using a magnetic mass analyzer. In addition to singly charged homonuclear Li n + (n ≤ 9) and Mg n + (n ≤ 4) and heteronuclear MgmLi n + (m, n ≤ 2) clusters, doubly charged diatomic and triatomic Mg clusters are observed. Discussion is focused on the observability and the formation mechanism of the doubly charged small Mg clusters. A postionization process is suggested for the formation of the doubly charged clusters.  相似文献   

2.
The mass spectra of silver- and gold-clusters, generated by a gas aggregation technique and ionized by electron impact, reveal anomalies in the relative abundance of both singly and multiply charged clusters. Concentration maxima for singly charged species Ag n + and Au n + (n=3, 9, 19, (21), 35) are in agreement with experimental data of Katakuse and the predictions from the electronic shell model. The observed anomalies in the abundance spectra of doubly charged silver and gold clusters as well as triply charged silver cluster ions are explained in terms of electronic shell closing.  相似文献   

3.
Silver clusters are generated by standard laser vaporization technique and ionized via multiphoton ionization. Time-of-flight mass spectrometry reveals singly, doubly and triply charged clusters, Ag n z+ (z=1,2,3). The spectra show, for all charge states, intensity variations, indicating enhanced stabilities for cluster sizes with closed electronic configurations in accord with the spherical jellium model.  相似文献   

4.
The dissociation patterns of doubly charged noble metal clusters (M) n ++ to two singly charged clusters, (M) m Emphasis>1/+ and (M) m Emphasis>2/+ have been investigated using a double focusing mass spectrometer. They are compared with the dissociation patterns from singly charged clusters. The dissociation probabilities to (M) 3 + and (M) 9 + were large and the odd-even alternations were observed in both patterns.  相似文献   

5.
The optical response of doubly charged sodium clusters Na n+2 ++ was measured for n = 20, 40, and 58 valence electrons, for which the jellium model predicts spherical clusters. A new experimental scheme was developed which allows to separate doubly charged clusters of even mass from the singly charged with half the mass. The optical spectra are dominated by a plasmon-like resonance which is blue shifted and narrower than that of the singly charged clusters. The smallest doubly charged cluster observed was Na 9 ++ . The photo ionization cross section for singly charged clusters was found to be typically 2.6·10-19cm2 per Na atom for photon energies of around 6 eV, which is a factor of 400 smaller than the maximum in the plasmon absorption in the region of =2.6 eV.  相似文献   

6.
Self-consistent field molecular orbital calculations have been performed on neutral and negatively charged clusters of carbon atoms using an extended basis set designed to obtain correct electron affinity. Correlation effects have been included perturbatively up to second order. The optimized geometries of theC n ? (n ≤ 7) anions are all linear chains as observed in experiments. The calculated electron affinities are comparable with experimental data. Studies of the stabilities of doubly charged anions show that clusters uptoC 7 ?? are unstable.  相似文献   

7.
Fission of doubly charged silver clusters is investigated by the method of shell corrections. The following fission events are considered: Ag 22 2+ → Ag n + + Ag 22 ?n + , (n=11, 10, 9, 8); Ag 21 2+ → Ag n + + Ag 21 ?n + , (n=10, 9, 8, 7); Ag 18 2+ → Ag n + + Ag 18 ?n + , (n=9, 8, 7, 6). It is found that the shell correction energy is comparable to or larger than the deformation energy of the liquid drop. Threshold energies for the fission events are calculated and compared with the experimental abundance spectra obtained by Katakuse et al. (1990). Correspondence between the calculated threshold energies with the shell corrections and the experimental abundance is very good, showing products from lower threshold fission channels yield more abundance. The threshold energies without the shell corrections are almost constant irrespective of the fission channels and cannot explain the experimental abundance. Abundance of some products are too small to be accounted for only by the threshold energies. The low abundance of those products may be explained by the presence of competing fission channels that have similar minimal energy paths. It is found in fission of Ag 18 2+ that the shell correction overwhelms the Coulomb energy and the fission channel to Ag8 + Ag 10 2+ is preferred over the fission channel to Ag 8 + + Ag 10 + .  相似文献   

8.
A minimum-basis diatomics-in-molecules (DIM) model previously developed for singly-ionized argon clusters is applied to neon clusters, Ne n + , forn=3, 4,...,22. A search for the global minimum energy of each cluster yields structures with the positive charge localised on a dimer-ion. This appears to be due largely to the linear unsymmetrical configuration which the model finds for Ne 3 + . For this reason, the structures of the clusters at their minimum energy are different from those for Ar n + computed with the same model. On the other hand, the behaviour of the charge distribution as a function of the geometrical configuration is similar to that for Ar n + , as are the overall shapes of the potential energy surfaces. The results are discussed in terms of the charge distributions and the ratios of equilibrium properties of the dimers and dimer-ions which constitute the input to the model.  相似文献   

9.
Using the gasaggregation technique it is possible to generate metal clusters in narrow size distributions and to vary their mean size by adjusting the cell parameters. The high intensity of this source allows to detect besides singly charged clusters also multiply charged ones. Ag n 2+ and Ag n 3+ are observed forn≧9 andn≧31, respectively; i.e. at values well below the critical sizes reported for spheres.  相似文献   

10.
We present a statistical fragmentation study of doubly charged alkali (Li, Na, K) and antimony clusters. The evaporation of one charged trimer is the most dominant decay channel (asymmetric fission) at low excitation energies. For small sodium clusters this was quite early found in molecular dynamical calculations by Landman et al. [1]. For doubly charged lithium clusters, we predict Li 9 + to be the preferential dissociation channel. As already seen experimentally a more symmetric fission is found for doubly charged antimony clusters. This different behavior compared to the alkali metal clusters is in our model essentially due to a larger fissility of antimony. This is checked by repeating the calculations for Na 52 ++ with a bulk fissility parameter set artificially equal to the value of Sb.  相似文献   

11.
Reactivity of positively charged cobalt cluster ions (Co n + ,n=2?22), produce by laser vaporization, with various gas samples (CH4, N2, H2, C2H4, and C2H2) were systematically investigated by using a fast-flow reactor. The reactivity of Co n + with the various gas samples is qualitatively consistent with the adsorption rate of the gas to cobalt metal surfaces. Co n + highly reacts with C2H2 as characterized by the adsorption rate to metal surfaces, and it indicates no size dependence. In contrast, the reactions of Co n + with the other gas samples indicate a similar cluster size dependence; atn=4, 5, and 10?15, Co n + highly reacts. The difference can be explained by the amount of the activation energy for chemisorption reaction. Compared with neutral cobalt clusters, the size dependence is almost similar except for Co 4 + and Co 5 + . The reactivity enhancement of Co 4 + and Co 5 + indicates that the cobalt cluster ions are presumed to have an active site for chemisorption atn=4 and 5, induced by the influence of positive charge.  相似文献   

12.
Mass-selected antimony cluster ions Sb n + (n = 3-12) and bismuth cluster ions Bi {ntn} + (n = 3-8) are allowed to collide with the surface of highly oriented pyrolytic graphite at energies up to 350 eV. The resulting fragment ions are analysed in a time-of-flight mass spectrometer. Two main fragmentation channels can be identified. At low impact energies both Sb n + and Bi n + cluster ions lose neutral tetramer and dimer units upon collision. Above about 150 eV impact energy Sb 3 + becomes the predominant fragment ion of all investigated antimony clusters. The enhanced stability of these fragment clusters can be explained in the framework of the polyhedral skeletal electron pair theory. In contrast, Bi n + cluster scattering leads to the formation of Bi 3 + , Bi 2 + and Bi+ with nearly equal abundances, if the collision energy exceeds 75 eV. The integral scattering yield is substantially higher in this case as compared to Sb n + clusters.  相似文献   

13.
Cluster abundance of Li n + (n≤19), Na n + (n≤25), Si n z+ (n≤8 forz=1, 3≤n≤7 forz=2), Ge n z+ (n≤11 forz=1, 3≤n≤9 forz=2,n=4 forz=3), Sn n z+ (n≤7 forz=1, 3≤n≤9 forz=2,n=4 forz=3) and Pb n z+ (n≤6 forz=1, 5≤n≤7 forz=2) ejected from a liquid metal ion source has been investigated by mass spectrometry. The abundance spectra of alkali metal clusters showed distinct maxima and steps atn=3, 7, 9, 13 and 19 for Li, and atn=3, 5, 11, 13 and 19 for Na. Mass spectra of Si, Ge and Sn clusters were very similar each other, showing intensity drops aftern=4 and 6 (and alson=10 for Ge) for singly charged clusters. The magic numbers observed are discussed in terms of stability of charged clusters.  相似文献   

14.
The low-energy dissociation channels of mass selected silver cluster ions Ag n 2+ (n = 9–24) are determined by collision induced dissociation (CID) in a Penning trap. While all clusters of the size n ≥ 17 evaporate neutral monomers, most smaller clusters undergo asymmetric fission of the form Ag n 2+ Ag n?3 + + Ag {3} + . However, Ag 15 2+ and Ag 11 2+ emit monomers which indicates shell or odd-even effects. The observed fragmentation pathways are different from previous reports of measurements with sputtered Ag n 2+ .  相似文献   

15.
The electronic properties of neutral and ionized divalent-metal clusters have been studied using a microscopic theory, which takes into account the interplay between van der Waals (vdW) and covalent bonding in the neutral clusters, and the competition between hole delocalization and polarization energy in the ionized clusters. By calculating the ground-state energies of neutral and ionized Hg n clusters, we determine the size dependence of the bond character and the ionization potentialI p (n). For neutral Hg n clusters we obtain a transition from van der Waals to covalent behaviour at the critical sizen c ~10–20 atoms. Results forI p (Hg n ) withn≤20 are in good agreement with experiments, and suggest that small Hg n + clusters can be viewed as consisting of a positive trimer core Hg 3 + surrounded byn?3 polarized neutral atoms.  相似文献   

16.
In a previous work the equilibrium geometrical and electronic structures of Xe n + clusters had been established using a non-empirical model hamiltonian. The same model is used to determine the energetic barriers between the nearly degenerate isomers; the movement of the neutral atoms around the Xe 3 + or Xe 4 + ionized linear cores are quite easy (ΔE?0.9 kcal/mole), the changes from a Xe 3 + to a Xe 4 + core are more difficult (ΔE?2.0 kcal/mole). The energetically possible fissions from a vertical photoionization \(Xe_n \xrightarrow{{h v}}Xe_n^{v + } \to Xe_p^ + + Xe_{n - p} \) forn≦19,p=1–9 and 12–14 and mass exchanges Xe p + +Xe q →Xe p+m + +Xe q?m (m=1,2,3) from relaxed Xe p + clusters are given forp+m≦9 and 12–14 andq≦19. Surprisingly the reverse reactions are shown to occur for some values ofp andq. Numerous processes lead to Xe 13 + , which is especially stable.  相似文献   

17.
A density-functional theory investigation on the interactions between C2H radical and small gold clusters Au n 0/? (n = 1–4) has been performed. The calculated results predict that C2H radical inclines to interact with small gold clusters Au n 0/? (n = 1–4) as an integrity in the most stable structures of C2HAu n 0/? (n = 1–4). The Au n 0/? (n = 1–4) clusters retain their structural integrity as units in the ground states of C2HAu n 0/? (n = 1–4). The stretching vibrational frequencies of C≡C and C–H in the ground states of C2HAu n ? (n = 1–4) are decreased compared with those of the C2H radical due to the interaction between the Au n 0/? clusters and C2H radical. Smaller red shifts in the C≡C and C–H stretching bands of C2HAu n ? occur with an increase in n. The photoelectron spectra of the most stable structures of C2HAu n ? (n = 1–4) have been simulated to aid their future experimental characterizations. The current study provides further insight into the interaction between C2H radicals and gold clusters, which may lead to exploitation of the high activity of gold nanocrystals.  相似文献   

18.
The production of H 3 + ions resulting from single collisions of mass-selected ionic hydrogen clusters, H n + (n=9, 25, 31), with helium at high velocity (1.55 times the Bohr velocity) has been studied. A strong double H 3 + ion production resulting from one incident cluster is observed. Moreover, evidence for a triple H 3 + fragment production is presented forn=25 and 31. Thus, in this energy range, the collision gives rise to multifragmentation processes. The formation of H 3 + ions takes place in the fragmentation of the multicharged cluster resulting from the collision.  相似文献   

19.
A direct measurement of collisionally induced fission of C 60 2+ has been performed. We have measured coincidences between various charged fragments resulting from collisions between C 60 2+ and He atoms. The measurements show that C 60 2+ not only emits C2 units but also breaks up into larger, singly charged parts. In this paper, we report on coincidences between C n + (2≦n≦9) and C m + (42≦m≦48) fragment ions.  相似文献   

20.
Photoelectrons from mass-identified jet-cooled tin and lead cluster anions (Sn n ? , Pb n ? ) are detached by ultraviolet laser light (=3.68 eV). The photoelectron energy spectra give the detachment energies of ground state cluster anions (electron affinities) as well as excitation energies of neutral clusters in the geometry of the anions. The energy spectra for Sn n ? are dominated by flat thresholds with ann-dependence similar to that of other group IV clusters. In contrast, for Pb n ? we find pronounced narrow lines close to threshold, generally followed by a 0.3–1.4 eV gap which indicates closed-shell behaviour of Pb n ? for nearly alln.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号