首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This study reports that photosensitizers encapsulated in supramolecular protein cages can be internalized by tumor cells and can deliver singlet oxygen intracellularly for photodynamic therapy (PDT). As an alternative to other polymeric and/or inorganic nanocarriers and nanoconjugates, which may also deliver photosensitizers to the inside of the target cells, protein nanocages provide a unique vehicle of biological origin for the intracellular delivery of photosensitizing molecules for PDT by protecting the photosensitizers from reactive biomolecules in the cell membranes, and yet providing a coherent, critical mass of destructive power (by way of singlet oxygen) upon specific light irradiation for photodynamic therapy of tumor cells. As a model, we demonstrated the successful encapsulation of methylene blue (MB) in apoferritin via a dissociation–reassembly process controlled by pH. The resulting MB-containing apoferritin nanocages show a positive effect on singlet oxygen production, and cytotoxic effects on MCF-7 human breast adenocarcinoma cells when irradiated at the appropriate wavelength (i.e. 633 nm).  相似文献   

2.
Photodynamic therapy (PDT) is a promising cancer ablation method, but its efficiency is easily affected by several factors, such as the insufficient delivery of photosensitizers, low oxygen levels as well as long distance between singlet oxygen and intended organelles. A multifunctional nanohybrid, named MGAB, consisting of gelatin-coated manganese dioxide and albumin-coated gold nanoclusters, was designed to overcome these issues by improving chlorin e6 (Ce6) delivery and stimulating oxygen production in lysosomes. MGAB were quickly degraded in a high hydrogen peroxide, high protease activity, and low pH microenvironment, which is closely associated with tumor growth. The Ce6-loaded MGAB were picked up by tumor cells through endocytosis, degraded within the lysosomes, and released oxygen and photosensitizers. Upon near-infrared light irradiation, the close proximity of oxygen with photosensitizer within lysosomes enabled the production of cytotoxic singlet oxygen, resulting in more effective PDT.  相似文献   

3.
The aim of this study is to modify the chick chorioallantoic membrane (CAM) model into a whole-animal tumor model for photodynamic therapy (PDT). By using intraperitoneal (i.p.) photosensitizer injection of the chick embryo, use of the CAM for PDT has been extended to include systemic delivery as well as topical application of photosensitizers. The model has been tested for its capability to mimic an animal tumor model and to serve for PDT studies by measuring drug fluorescence and PDT-induced effects. Three second-generation photosensitizers have been tested for their ability to produce photodynamic response in the chick embryo/CAM system when delivered by i.p. injection: 5-aminolevulinic acid (ALA), benzoporphyrin derivative monoacid ring A (BPD-MA), and Lutetium-texaphyrin (Lu-Tex). Exposure of the CAM vasculature to the appropriate laser light results in light-dose-dependent vascular damage with all three compounds. Localization of ALA following i.p. injections in embryos, whose CAMs have been implanted with rat ovarian cancer cells to produce nodules, is determined in real time by fluorescence of the photoactive metabolite protoporphyrin IX (PpIX). Dose-dependent fluorescence in the normal CAM vasculature and the tumor implants confirms the uptake of ALA from the peritoneum, systemic circulation of the drug, and its conversion to PpIX.  相似文献   

4.
Fluorescence-guided surgery (FGS) is routinely utilized in clinical centers around the world, whereas the combination of FGS and photodynamic therapy (PDT) has yet to reach clinical implementation and remains an active area of translational investigations. Two significant challenges to the clinical translation of PDT for brain cancer are as follows: (1) Limited light penetration depth in brain tissues and (2) Poor selectivity and delivery of the appropriate photosensitizers. To address these shortcomings, we developed nanoliposomal protoporphyrin IX (Nal-PpIX) and nanoliposomal benzoporphyrin derivative (Nal-BPD) and then evaluated their photodynamic effects as a function of depth in tissue and light fluence using rat brains. Although red light penetration depth (defined as the depth at which the incident optical energy drops to 1/e, ~37%) is typically a few millimeters in tissues, we demonstrated that the remaining optical energy could induce PDT effects up to 2 cm within brain tissues. Photobleaching and singlet oxygen yield studies between Nal-BPD and Nal-PpIX suggest that deep-tissue PDT (>1 cm) is more effective when using Nal-BPD. These findings indicate that Nal-BPD-PDT is more likely to generate cytotoxic effects deep within the brain and allow for the treatment of brain invading tumor cells centimeters away from the main, resectable tumor mass.  相似文献   

5.
Bladder cancer is the first cancer for which PDT was clinically approved in 1993. Unfortunately, it was unsuccessful due to side effects like bladder contraction. Here, we summarized the recent progress of PDT for bladder cancers, focusing on photosensitizers and formulations. General strategies to minimize side effects are intravesical administration of photosensitizers, use of targeting strategies for photosensitizers and better control of light. Non-muscle invasive bladder cancers are more suitable for PDT than muscle invasive and metastatic bladder cancers. In 2010, the FDA approved blue light cystoscopy, using PpIX fluorescence, for photodynamic diagnosis of non-muscle invasive bladder cancer. PpIX produced from HAL was also used in PDT but was not successful due to low therapeutic efficacy. To enhance the efficacy of PpIX-PDT, we have been working on combining it with singlet oxygen-activatable prodrugs. The use of these prodrugs increases the therapeutic efficacy of the PpIX-PDT. It also improves tumor selectivity of the prodrugs due to the preferential formation of PpIX in cancer cells resulting in decreased off-target toxicity. Future challenges include improving prodrugs and light delivery across the bladder barrier to deeper tumor tissue and generating an effective therapeutic response in an In vivo setting without causing collateral damage to bladder function.  相似文献   

6.
In order to apply photodynamic therapy (PDT) to pigmented melanoma, the efficacy of PDT mediated by pheophorbide alpha from silkworm excreta (SPbalpha) and commercial Photofrin against B16F10 melanoma was comparatively studied from the in vivo assay using C57BL/6J mice. From in vitro PDT assay, the proliferation of B16F10 cells treated with SPbalpha (more than 0.5 microg/ml) and light illumination (1.2 J/cm2) were significantly inhibited with the necrotic response. This indicated that the photocytotoxicity of SPbalpha (665 nm) was not influenced by melanin from melanoma. From the assessment of the in vivo photosensitizing activity, the tumor growth was further delayed in groups treated with SPbalpha/PDT compared to that treated with Photofrin /PDT. The survival rate of tumor bearing mice treated with SPbalpha/PDT was closely associated with its photosensitizing effect. In addition, the photosensitizing effect of SPbalpha/PDT showed a dose dependent tendency in light illumination. These results demonstrated that B16F10 melanoma cells were significantly photosensitized by SPbalpha/PDT, regardless of the influence of melanin from melanoma, and SPbalpha/PDT at very low drug dose (1 mg/kg) and light dose (1.2 J/cm2) showed the photosensitizing efficacy surpassing Photofrin against B16F10 melanoma in mice system.  相似文献   

7.
A series of water-soluble tetrasulfonated metallophthalocyanines (MPcs) dyes have been studied to be used as a drug or photosensitizer (PS) in photodynamic therapy (PDT) for the treatment of cancers. During PDT the PS is administrated intravenously or topically to the patient before laser light at an appropriate wavelength is applied to the cancerous area to activate the PS. The activated PS will react with oxygen typically present in the cancerous tissue to generate reactive oxygen species for the destruction of the cancerous tissue. This in vitro study aimed at investigating the cytotoxic effects of different concentrations of zinc tetrasulfophthalocyanines (ZnTSPc) activated with a diode laser (λ = 672 nm) on melanoma, keratinocyte and fibroblast cells. To perform this study 3 × 10? cells/ml were seeded in 24-well plates and allowed to attach overnight, after which cells were treated with different concentrations of ZnTSPc. After 2h, cells were irradiated with a constant light dose of 4.5J/cm2. Post-irradiated cells were incubated for 24 h before cell viability was measured using the CellTiter-Blue Viability Assay. Data indicated high concentrations of ZnTSPc (60-100 μg/ml) in its inactive state are cytotoxic to the melanoma cancer cells. Also, results showed that photoactivated ZnTSPc (50 μg/ml) was able to reduce the cell viability of melanoma, fibroblast and keratinocyte cells to 61%, 81% and 83% respectively. At this photosensitizing concentration the efficacy the treatment light dose of 4.5J/cm2 against other light doses of 2.5J/cm2, 7.5J/cm2 and 10J/cm2 on the different cell lines were analyzed. ZnTSPc at a concentration of 50 μg/ml activated with a light dose of 4.5J/cm2 was the most efficient for the killing of melanoma cancer cells with reduced killing effects on healthy normal skin cells in comparison to the other treatment light doses. Melanoma cancer cells after PDT with a photosensitizing concentration of 50μg/ml and a treatment light dose of 4.5J/cm2 showed certain apoptosis characteristics such as chromatin condensation and fragmentation of the nucleus. This concludes that low concentrations of ZnTSPc activated with the appropriate light dose can be used to induce cell death in melanoma cells with the occurrence of minimal damage to surrounding healthy tissue.  相似文献   

8.
Abstract— The tumoricidal effects of photochemotherapy with two photosensitizers, 5-ethylamino-9-diethylaminobenzo[ a ] phenothiazinium chloride (EtNBS) and benzoporphyrin derivative monoacid ring A (BPD-MA), were evaluated separately and in combination against the EMT-6 fibrosarcoma implanted subcutaneously in BALB/c mice. Animals carrying tumors 8-10 mm in diameter were divided into eight different groups (∼20/group) and subjected to various photoirradiation and drug conditions. The tumor response to photodynamic therapy (PDT) was measured as the mean tumor wet weight 2 weeks post-PDT. The combination treatment with 5.25 mg/kg EtNBS and 2.5 mg/kg BPD-MA followed by photoirradiation with 100 J/cm2 at 652 nm and then by 100 J/cm2 at 690 nm resulted in a 95% reduction in the average tumor weights compared to controls (no light, no drugs) with 76% of the mice being tumor free 2 weeks post-PDT. Because treatment with EtNBS or BPD-MA at twice the light dose and drug concentration resulted in either no significant reduction in tumor weights or increased the lethality of treatment, respectively, the data suggest that the enhanced PDT effect observed with the combination of drugs is synergistic rather than additive. Histology of tumors 24 h post-PDT with the combination of drugs showed nearly complete destruction of the tumor mass with little or no damage to the vasculature and no extravasation of red blood cells. There was no damage to the normal skin adjacent to the tumor. Fluorescence microscopy of EMT-6 cells incubated in vitro with the two photosensitizers revealed that they were localized to different intracellular compartments. The fluorescence pattern from frozen tumor tissue slices following the in vivo administration of the photosensitizers indicated a greater intracellular localization for EtNBS vs BPD-MA.  相似文献   

9.
BACKGROUND: 5,10,15,20-Tetrakis(m-hydroxyphenyl)chlorin (mTHPC)-mediated photodynamic therapy (PDT) has shown insufficient tumor selectivity for the treatment of pleural mesothelioma. Tumor selectivity of mTHPC-PDT may be enhanced in the presence of the TAT-RasGAP(317-326) peptide which has the potential to specifically sensitize tumor cells to cytostatic agents. MATERIALS AND METHODS: H-meso-1 and human fibroblast cell cultures, respectively, were exposed to two different mTHPC doses followed by light delivery with and without TAT-RasGAP(317-326) administration. mTHPC was added to the cultures at a concentration of 0.04microg/ml and 0.10microg/ml, respectively, 24h before laser light illumination at 652nm (3J/cm(2), 40mW/cm(2)). TAT-RasGAP(317-326) was added to the cultures immediately after light delivery at a concentration of 20microM. The apoptosis rate was determined by scoring the cells displaying pycnotic nuclei. Cell viability was measured by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. RESULTS: Light delivery associated with 0.04microg/ml mTHPC resulted in a significantly higher apoptosis rate in the presence of TAT-RasGAP(317-326) than without in H-meso-1 cells (p<0.05) but not in fibroblasts. In contrast, 1.0microg/ml mTHPC and light resulted in a significantly higher apoptosis rate in both H-meso-1 cells and fibroblasts as compared to controls (p<0.05) but the addition of TAT-RasGAP(317-326) did not lead to a further significant increase of the apoptosis rate of both H-meso-1 cells and fibroblasts as compared to mTHPC and light delivery alone. CONCLUSION: TAT-RasGAP(317-326) selectively enhanced the effect of mTHPC and light delivery on H-meso-1 cells but not on fibroblasts. However, this effect was mTHPC dose-dependent and occurred only at a low sensitizer dose.  相似文献   

10.
A diaminophenyl derivative of hypocrellin B (SL052) has been developed as a photosensitizer for use in photodynamic therapy (PDT) of solid tumors. Testing SL052-PDT on mouse carcinoma and fibrosarcoma models revealed a typical response seen with clinically established photosensitizers featuring initial rapid tumor ablation with ensuing recurrence at rates dependent on photosensitizer/light doses. Elevated numbers of immune cells were found in lymph nodes draining SCCVII mouse squamous cell carcinomas treated by SL052-PDT (in particular T cells), and the accumulation of degranulating cytotoxic T cells was detected at the tumor-treated site. This indicates that a significant contribution to tumor cures is elicited by an antitumor adaptive immune response. Two different immunotherapy agents, γ-interferon and antibody blocking inhibitory FcγRIIB receptor, were both found to be highly effective in potentiating the curative effect of SL052-PDT with SCCVII tumors. Combining SL052-PDT with FcγRIIB-blocking antibody treatment caused a further increase in the number of cells in tumor-draining lymph nodes and in degranulating CD8+ cells, suggesting the amplification of the immune response induced by PDT. Vaccines consisting of SCCVII cells treated with SL052-PDT in vitro were effective in reducing growth of established subcutaneous SCCVII tumors. In conclusion, PDT mediated by SL052 is suitable to be integrated with various immunotherapy protocols.  相似文献   

11.
Photodynamic therapy (PDT), the combined action of a photosensitizer and light to produce a cytotoxic effect, is an approved therapy for a number of diseases. At present, clinical PDT treatments involve one-photon excitation of the photosensitizer. A major limitation is that damage may be caused to healthy tissues that have absorbed the drug and lie in the beam path. Two-photon excitation may minimize this collateral damage, as the probability of absorption increases with the square of the light intensity, enabling spatial confinement of the photosensitizer activation. A potential application is the treatment of the wet-form of age-related macular degeneration, the foremost cause of central vision loss in the elderly. Herein, the commercial photosensitizers Visudyne and Photofrin are used to demonstrate quantitative in vitro two-photon PDT. A uniform layer of endothelial cells (YPEN-1) was irradiated with a Ti:sapphire laser (300 fs, 865 nm, 90 MHz) using a confocal scanning microscope. Quantification of the two-photon PDT effect was achieved using the permeability stain Hoechst 33258 and a SYTOX Orange viability stain. Visudyne was found to be around seven times more effective as a two-photon photosensitizer than Photofrin under the conditions used, consistent with its higher two-photon absorption cross-section. We also demonstrate for the first time the quadratic intensity dependence of cellular two-photon PDT. This simple in vitro method for quantifying the efficacy of photosensitizers for two-photon excited PDT will be valuable to test specifically designed two-photon photosensitizers before proceeding to in vivo studies in preclinical animal models.  相似文献   

12.
Photodynamic therapy (PDT) is a new treatment modality for solid tumors as well as for flat lesions of the gastrointestinal tract. Although the use of 5-aminolevulinic acid-induced protoporphyrin IX (PPIX) shows important advantages over other photosensitizers, the main mechanisms of phototoxicity induced are still poorly understood. Three human colon carcinoma cell lines with variable degrees of differentiation and a normal colon fibroblast cell line were used to generate a suitable in vitro model for investigation of photosensitizer concentration as well as the applied light dose. Also, the effects of intracellular photosensitizer localization on efficiency of PDT were examined, and cellular parameters after PDT (morphology, mitochondrial transmembrane potential, membrane integrity and DNA fragmentation) were analyzed to distinguish between PDT-induced apoptosis from necrosis. The fibroblast cell line was less affected by phototoxicity than the tumor cells to a variable degree. Well-differentiated tumor cells showed higher toxicity than less-differentiated cells. After irradiation, cell lines with cytosolic or mitochondrial PPIX localization indicate a loss of mitochondrial transmembrane potential resulting in growth arrest, whereas membrane-bound PPIX induces a loss of membrane integrity and consequent necrosis. Although the absolute amount of intracellular photosensitizer concentration plays the main determining role for PDT efficiency, data indicate that intracellular localization has additional effects on the mode of cell damage.  相似文献   

13.
SITES OF PHOTODYNAMICALLY INDUCED DNA REPAIR IN HUMAN CELLS   总被引:1,自引:0,他引:1  
Abstract Human REH cells were incubated with the photosensitizers meso -tetra(4-sulfonatophenyl)porphyrin (TSPP=TPPS4) or meso -tetra(3-hydroxyphenyl)porphyrin (3-THPP). The relatively hydrophilic TSPP was partly found in the cytoplasm and partly in the nuclei, whereas the lipophilic 3-THPP was found apparently in membranes and not inside the nuclei. After illumination, sites of DNA repair were labeled by means of a monoclonal antibody against proliferating cell nuclear antigen (PCNA) bound in the nuclei. The amount of bound PCNA in non-S-phase cells was proportional to the light dose. The bound PCNA was homogeneously distributed in the nuclei 0.5 h after photodynamic treatment (PDT) with TSPP. In contrast, for cells given PDT with 3-THPP, the periphery of the nuclei was selectively labeled, indicating that the initial DNA damage was localized close to the sensitizer at the nuclear membrane.  相似文献   

14.
In this paper, a self‐delivery chimeric peptide PpIX‐PEG8‐KVPRNQDWL is designed for photodynamic therapy (PDT) amplified immunotherapy against malignant melanoma. After self‐assembly into nanoparticles (designated as PPMA), this self‐delivery system shows high drug loading rate, good dispersion, and stability as well as an excellent capability in producing reactive oxygen species (ROS). After cellular uptake, the ROS generated under light irradiation could induce the apoptosis and/or necrosis of tumor cells, which would subsequently stimulate the anti‐tumor immune response. On the other hand, the melanoma specific antigen (KVPRNQDWL) peptide could also activate the specific cytotoxic T cells for anti‐tumor immunity. Compared to immunotherapy alone, the combined photodynamic immunotherapy exhibits significantly enhanced inhibition of melanoma growth. Both in vitro and in vivo investigations confirm that PDT of PPMA has a positive effect on anti‐tumor immune response. This self‐delivery system demonstrates a great potential of this PDT amplified immunotherapy strategy for advanced or metastatic tumor treatment.  相似文献   

15.
Benzochlorin iminium salts (Bis) are hydrophobic photosensitizers based on an octaethylbenzochlorin nucleus that absorb in the near-IR region of the visible spectrum. In these studies the photodynamic activities of the zinc, copper and metal-free BI derivatives were compared in vivo in C3H-HeJ mice bearing a mammary adenocarcinoma tumor line. In vitro studies were also performed with the radiation-induced fibrosarcoma tumor line. An argon-pumped Ti-sapphire laser tuned to deliver light between 710 and 800 nm or an Oriel arc-lamp filtered to deliver broadband light above 590 nm were used as light source. A lipid emulsion was used as the delivery system for sensitizers in all studies. A pronounced solvent dependence was observed for the Q band for each of all iminium salts examined. As an example, the metal-free (BI) derivative had an absorption maximum at 798 nm in dichloromethane and at 727 nm in serum. The action spectra showed a greater PDT response at blue-shifted wavelengths for each of the three iminium salts both in vivo and in vitro. Among the three derivatives, the zinc analog (ZnBI) produced the greatest tumor regression at the low drug/light dose of 0.7 (μ mole/kg and 200 J/cm2. These results indicate that iminium salts have characteristics that may make them promising third-generation photosensitizers.  相似文献   

16.
Signaling pathways in cell death and survival after photodynamic therapy   总被引:9,自引:0,他引:9  
Photodynamic therapy (PDT) is a cytotoxic treatment, which can induce cells to initiate a rescue response, or to undergo cell death, either apoptosis or necrosis. The many signaling pathways involved in these processes are the topic of this review. The subcellular localization of the photosensitizer has been shown to be a key factor in the outcome of PDT. Mitochondrial localized photosensitizers are able to induce apoptosis very rapidly. Lysosomal localized photosensitizers can elicit either a necrotic or an apoptotic response. In the plasma membrane, a target for various photosensitizers, rescue responses, apoptosis and necrosis is initiated. Several protein phosphorylation cascades are involved in the regulation of the response to PDT. Finally, a number of stress-induced proteins play a role in the rescue response after PDT. Notably, the induction of apoptosis by PDT might not be crucial for an optimal outcome. Recent studies indicate that abrogation of the apoptotic pathway does alter the clonogenic survival of the cells after PDT. Further studies, both in vitro and especially in vivo could lead to more efficient combination therapies in which signaling pathways, involved in cell death or rescue, are either up- or downregulated before PDT.  相似文献   

17.
Nanocarriers are employed to deliver photosensitizers for photodynamic therapy (PDT) through the enhanced penetration and retention effect, but disadvantages including the premature leakage and non-selective release of photosensitizers still exist. Herein, we report a 1O2-responsive block copolymer (POEGMA-b-P(MAA-co-VSPpaMA) to enhance PDT via the controllable release of photosensitizers. Once nanoparticles formed by the block copolymer have accumulated in a tumor and have been taken up by cancer cells, pyropheophorbide a (Ppa) could be controllably released by singlet oxygen (1O2) generated by light irradiation, enhancing the photosensitization. This was demonstrated by confocal laser scanning microscopy and in vivo fluorescence imaging. The 1O2-responsiveness of POEGMA-b-P(MAA-co-VSPpaMA) block copolymer enabled the realization of self-amplified photodynamic therapy by the regulation of Ppa release using NIR illumination. This may provide a new insight into the design of precise PDT.  相似文献   

18.
Photodynamic therapy removes unwanted or harmful cells by overproduction of reactive oxygen species (ROS). Fractionated light delivery in photodynamic therapy may enhance the photodynamic effect in tumor areas with insufficient blood supply by enabling the reoxygenation of the treated area. This study addresses the outcome of fractionated irradiation in an in vitro photodynamic treatment (PDT) system, where deoxygenation can be neglected. Our results show that fractionated irradiation with light/dark intervals of 45/60 s decreases ROS production and cytotoxicity of PDT. This effect can be reversed by addition of 1,3-bis-(2-chlorethyl)-1-nitrosurea (BCNU), an inhibitor of the glutathione reductase. We suggest that the dark intervals during irradiation allow the glutathione reductase to regenerate reduced glutathione (GSH), thereby rendering cells less susceptible to ROS produced by PDT compared with continuous irradiation. Our results could be of particular clinical importance for photodynamic therapy applied to well-oxygenated tumors.  相似文献   

19.
Photodynamic therapy (PDT) with Photofrin has already been authorized for certain applications in Japan, the USA and France, and powerful second-generation sensitizers such as meta-(tetrahydroxyphenyl) chlorin (m-THPC) are now being considered for approval. Although sensitizers are likely to localize within the cytoplasm or the plasma membrane, nuclear membrane can be damaged at an early stage of photodynamic reaction, resulting in DNA lesions. Thus, it is of critical importance to assess the safety of m-THPC-PDT, which would be used mainly against early well-differentiated cancers. In this context, m-THPC toxicity and phototoxicity were studied by a colorimetric MTT assay on C6 cells to determine the LD50 (2.5 microg/ml m-THPC for 10 J/cm2 irradiation and 1 microg/ml for 25 J/cm2 irradiation) and PDT doses inducing around 25% cell death. Single-cell electrophoresis (a Comet assay with Tail Moment calculation) was used to evaluate DNA damage and repair in murine glioblastoma C6 cells after LD25 or higher doses for assays of PDT. These results were correlated with m-THPC nuclear distribution by confocal microspectrofluorimetry. m-THPC failed to induce significant changes in the Tail Moment of C6 cells in the absence of light, whereas m-THPC-PDT induced DNA damage immediately after irradiation. The Tail Moment increase was not linear (curve slope being 43 for 0-1 microg/ml m-THPC and 117 for 1-3 microg/ml), but the mean value increased with the light dose (0, 10 or 25 J/cm2) and incubation time (every hour from 1 to 4 h) for an incubation with m-THPC 1 microg/ml. However, cultured murine glioblastoma cells were capable of significant DNA repair after 4 h, and no residual DNA damage was evident after 24-h post-treatment incubation at 37 degrees C. An increase in the light dose appeared to be less genotoxic than an increase in the m-THPC dose for similar toxicities. Our results indicate that m-THPC PDT appears to be a safe treatment since DNA repair seemed to not be impaired and DNA damage occurred only with lethal PDT doses. However, the Comet assay cannot give us the certainty that no mutation, photoadducts or oxidative damage have been developed so this point would be verified with another mutagenicity assay.  相似文献   

20.
Photodynamic therapy (PDT) requires molecular oxygen during light irradiation to generate reactive oxygen species. Tumor hypoxia, either preexisting or induced by PDT, can severely hamper the effectiveness of PDT. Lowering the light irradiation dose rate or fractionating a light dose may improve cell kill of PDT-induced hypoxic cells but will have no effect on preexisting hypoxic cells. In this study hyperoxygenation technique was used during PDT to overcome hypoxia. C3H mice with transplanted mammary carcinoma tumors were injected with 12.5 mg/kg Photofrin and irradiated with 630 nm laser light 24 h later. Tumor oxygenation was manipulated by subjecting the animals to 3 atp (atmospheric pressure) hyperbaric oxygen or normobaric oxygen during PDT light irradiation. The results show a significant improvement in tumor response when PDT was delivered during hyperoxygenation. With hyperoxygenation up to 80% of treated tumors showed no regrowth after 60 days. In comparison, when animals breathed room air, only 20% of treated tumors did not regrow. To explore the effect of hyperoxygenation on tumor oxygenation, tumor partial oxygen pressure was measured with microelectrodes positioned in preexisting hypoxic regions before and during the PDT. The results show that hyperoxygenation may oxygenate preexisting hypoxic cells and compensate for oxygen depletion induced by PDT light irradiation. In conclusion, hyperoxygenation may provide effective ways to improve PDT efficiency by oxygenating both preexisting and treatment-induced cell hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号