首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Tetraepoxy[32]annulenes(4.4.4.4) and `Tetraoxa[30]porphyrin(4.4.4.4)' Dications Of the tetraepoxy[32]annulenes as well as the `tetraoxa[30]porphyrin' dications, hithertoo only the (8.0.8.0) and the (6.2.6.2) systems are known to exist in several geometric isomers and to possess antiaromatic and aromatic character, respectively. Here we describe the still missing symmetric member of the [32]annulenes, the tetraepoxy[32]annulene(4.4.4.4) 1 and the corresponding `tetraoxa[30]porphyrin(4.4.4.4)' dication 2 . The cyclizing Wittig reaction of the dialdehyde 3 with the bis‐phosphonium salt 7 at 70° yields the configurational isomers 1a (ZE,EE,EZ,EE), 1b (ZE,EE,EE,EE), and 1c (EZ,EE,EZ,EE). All isomers are antiaromatic; in 1a and 1c , the two (E,E)‐buta‐1,3‐diene‐1,4‐diyl bridges rotate around the adjacent σ‐bonds; the rigidity of 1b with 3 (E,E) bridges prevents any dynamic character. The Wittig reaction of 3 with 7 at 20° only yields the kinetically controlled annulene 1c , and at 120°, an excess of the thermodynamically most stable isomer 1a is formed. The structure of 1 is elucidated mainly by COSY and NOESY experiments, and the dynamic character of 1a and 1c is established by temperature‐dependent 1H‐NMR spectroscopy. The oxidation of the isomer mixture 1a – c with 4,5‐dichloro‐3,6‐dioxocyclohexa‐1,4‐diene‐1,2‐dicarbonitrile (DDQ) gives two isomeric `tetraoxa[30]porphyrin(4.4.4.4)' dications 2′ and 2″ , which are frozen conformers with the same (EZ,EE,EZ,EE)‐configuration and geometrically related to 1c . Semiempirical calculations of 1 and 2 are in full agreement with the experimental results.  相似文献   

2.
Neutral Aromatic Tetraepoxyannulenes: Tetraepoxy[26]annulenes(4.2.2.2) and Tetraepoxy[30]annulenes(4.4.4.2) – Systems with High Molecular Dynamics The twofold cyclizing Wittig reaction of the bis‐aldehyde 6 with the ylide of the bis‐phosphonium salt 7 yields tetraepoxy[26]annulene(4.2.2.2) 4 , which exists in the two isomeric forms 4a (EE,Z,E,Z) and 4b (EE,Z,E,E). Annulene 4a is a highly dynamic system down to −80°. Temperature‐dependent 1H‐NMR spectra of 4a establish that the (E,E)‐buta‐1,3‐dien‐1,4‐diyl as well as the (E)‐ethen‐1,2‐diyl bridges rotate around the adjacent σ‐bonds in a synchronous manner. Isomer 4b , for steric reasons, is rigid. By Wittig reaction of the bis‐aldehyde 8 with the ylide of the bis‐phosphonium salt 9 , the tetraepoxy[30]annulene(4.4.4.2) 5 is obtained, which exists also in two isomeric forms, 5a and 5b . Only 5a (EE,ZE,EE,Z) can be isolated in pure form. Like 4a , 5a is highly dynamic, the (E,E)‐buta‐1,3‐dien‐1,4‐diyl as well as the opposite (E)‐ethen‐1,2‐diyl bridge being able to rotate down to −80°. The 1H‐NMR spectrum at −80° indicates that 5a exists in the stable conformation 5a′ . The 26‐ and 30‐membered annulenes belong to the most expanded neutral annulenes known hitherto; their 1H‐NMR spectra confirm that they still have diatropic, aromatic character.  相似文献   

3.
Diepoxy[18]annulenes(10.0): ( Z , E , Z , E , Z )‐Diepoxy[18]annulene(10.0) – a Highly Dynamic Annulene The McMurry reaction of (all‐E)‐5,5′‐([2,2′‐bifuran]‐5,5′‐diyl)bis[penta‐2,4‐dienal] ( 13 ) only occurs intramolecularly to give a mixture of the diepoxy[18]annulenes(10.0) 6 and 7 . Tetraepoxy[36]annulene(10.0.10.0) resulting from an intermolecular McMurry reaction is not formed. According to spectroscopic data, 6 is (Z,E,Z,E,Z)‐ and 7 (Z,E,E,Z,E)‐configured. The 1H‐NMR data confirm that in 6 the (E)‐ethene‐1,2‐diyl bonds (C(11)=C(12) and C(15)=C(16)) rotate around the adjacent σ‐bonds. Beginning at −70°, this rotation freezes, and 6 is becoming a diatropic aromatic ring system. Beside [18]annulene itself, (Z,E,Z,E,Z)‐diepoxy[18]annulene(10.0) 6 is the only hitherto known [18]annulene derivative with dynamic properties.  相似文献   

4.
8,19-Dimethyl-tetraepoxy[22]annulen(2.1.2.1): The First Tetraepoxy-Bridged Aromatic[22]Annulene By McMurry reaction of 5,5′-ethylidenebis[furan-2-carbaldehyde] ( 15 ), a syn/anti mixture 16 of (E,E)- and (Z,Z)-8,19-dihydro-8,19-dimethyl-tetraepoxy[22]annulene is obtained. The (E/E)-isomers 16 are the first rotation- ally active noncyclic conjugated macrocycles, where the (E)-ethenediyl moieties rotate around the connecting single bonds. The dihydro-tetraepoxy[22]annulenes 16 are dehydrogenated by (Ph3C)BF4 as well as by O2 to give the tetraepoxy[22]annulene 11 . The spectroscopic data support the character of 11 as an aromatic, diatropic ring system, which is rather sensitive towards O2. In the oxidation mixture obtained from 11 , beside polymeric products, two compounds 19 and 20 can be isolated, carrying one and two CHO groups, respectively, resulting by oxidation of one or both Me-groups but having retained the aromatic 22π system of 11 .  相似文献   

5.
Configurational and Conformational Isomeric Paratopic, Rotational Dynamics Tetraepoxy[30]annulenes(6.2.6.2) and Diatropic Tetraoxa[30]porphyrin(6.2.6.2) Dications: Detection of a Tetraepoxy[31]annulene(6.2.6.2)Radical Cation The synthesis of tetraepoxy[32]annulenes(6.2.6.2) ( 4 ) by a cyclizing twofold Wittig reaction of (E,E,E)-5,5′-(hexa-1,3,5-triene-1,6-diyl)bis[furan-2-carbaldehyde] ( 6 ) and the corresponding bis-phosphonium salt 7 is described (Scheme 1). Contrary to the configuration of the educts, the obtained annulenes 4a and 4b are (Z,E,E,E,Z,E,E,E)- and (E,Z,E,E,E,Z,E,E)-configurated, respectively. The 1H-NMR spectra establish the paratropic, antiaromatic character of 4 . The annulenes 4 are highly dynamic systems, the (E)-ethenediyl bridges rotate around the adjacent σ-bonds, these rotations are frozen at −80°. The McMurry condensation of dialdehyde 6 yields the (E,E,Z,E,E,E,Z)-4,5-dihydrotetraepoxy[32]annulene(6.2.6.2) ( 13a ), where the configuration of the dialdehyde 6 – beside the hydrogenated double bond – is retained. As result of an intramolecular McMurry reaction of 6 , (Z,E,Z,Z)-dioxa[16]annulene(6.2) 14 is formed. By oxidation of the [32]annulenes(6.2.6.2) 4a and 4b , a mixture of the four stereoisomeric tetraoxa[30]porphyrin(6.2.6.2) dications 5a / 5a ′/ 5b / 5c is obtained; the configuration of the isomers is determined by COSY, NOESY, and NOE experiments. The Δδ values (26.81, 25.83, and 21.11 ppm) underline the diatropic, aromatic character of the dications 5 , the Soret bands are shifted bathochromically to 550 nm, and the Q-bands are in the NIR region (896 – 1039 nm). The dihydroannulene 13a is dehydrogenated by p-chloroanil (tetrachloro-1,4-benzoquinone) to give the annulenes 4a and 4b , its oxidation with DDQ (=4,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,2-dicarbonitrile) results in the same mixture of dications 5 . Entirely different results are obtained by reaction of the dihydroannulene 13a with DDQ. Here, the (E,E,E,Z,E,E,E,Z) tetraoxa[30]porphyrin(6.2.6.2) dication 5c – formed only in traces from 4a / 4b – is the main product. Beside 5c , a by-product (3%) can be isolated, which turns out (ESR, conductivity) to be the (E,E,E,Z,E,E,E,Z)-tetraoxa[31]porphyrin(6.2.6.2) radical cation 16 , obviously the intermediate in the oxidation sequence of the annulene to the dication. This result leads to the conclusion that the reaction of the dihydro compound 13a with p-chloroanil and DDQ follows different reaction mechanisms. For all isolated stereoisomeric tetraepoxy annulenes and tetraoxaporphyrin dications, the ΔHf values are calculated by the semiempiric AM1 method. The results are in agreement with the experimental observations. All data confirm the antiaromaticity of the tetraepoxy[32]annulenes(6.2.6.2) 4 and the aromaticity of the tetraoxa[30]porphyrin(6.2.6.2) dications.  相似文献   

6.
█tl="American"█The synthesis of the three N,N′-di(4-coumaroyl)tetramines, i.e., of (E,E)-N-{3-[(2-aminoethyl)amino]propyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(ethane-1,2-diyl)bis[prop-2-enamide] ( 1a ), (E,E)-N-{4-[(2-aminoethyl)amino]butyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(ethane-1,2-diyl)bis[prop-2-enamide] ( 1b ), and (E,E)-N-{6-[(2-aminoethyl)amino]hexyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(ethane-1,2-diyl)bis[prop-2-enamide] ( 1c ), is described. It proceeds through stepwise construction of the symmetric polyamine backbone including protection and deprotection steps of the amino functions. Their behavior on TLC in comparison with that of 1,4-di(4-coumaroyl)spermine (=(E,E)-N-{4-[(3-aminopropyl)amino]butyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(propane-1,3-diyl)bis[prop-2-enamide]; 2 ) is discussed.  相似文献   

7.
Superheteroaromatic Systems with Furan Building Blocks: Isomeric Antiaromatic Tetraepoxy[36]annulenes(6.4.6.4) and Aromatic Tetraoxa[34]porphyrin(6.4.6.4) Dications The title compounds are available by a twofold cyclizing Wittig reaction of (all‐E)‐3,3′‐(hexa‐1,3,5‐triene‐1,6‐diyldifuran‐5,2‐diyl)bis[prop‐2‐enal] ( 4 ) with (all‐E)‐(hexa‐1,3,5‐triene‐1,6‐diyl)bis(furan‐5,2‐diylmethylene)bis[triphenylphosphonium] dibromide ( 7 ). Two conformational isomers 2a / 2a ′ of (Z,E,E,E,E,Z,E,E,E,E)‐tetraepoxy[36]annulene(6.4.6.4) are obtained. The oxidation of 2a / 2a ′ yields two (E,E,Z,E,E,E,E,Z,E,E)‐tetraoxa[34]porphyrin(6.4.6.4) dications 3a / 3a ′, which are conformers, too. The oxidation of 2a / 2a ′ is accompanied by the isomerization of four ethen‐1,2‐diyl bridges. The reduction of the dications 3a / 3a ′ leads to the new (E,E,Z,E,E,E,E,Z,E,E)‐tetraepoxy[36]annulene(6.4.6.4) ( 2b ) and (E,E,E,Z,E,E,E,E,Z,E)‐tetraepoxy[36]annulene(6.4.6.4) ( 2c ). In 2b as well as in 2c , both 1,3‐butadiene‐1,4‐diyl bridges are rotating until −90°. The Δδ values, i.e., the maximum δ difference of the `inner' and `outer' perimeter protons of 3a / 3a ′ (26.62 and 25.32 ppm) are of the same size as the Δδ value of the tetramethyl[34]porphyrin(5.5.5.5) dication ( 1 ; Δδ=25.3 ppm); therefore, they might be called `superheteroaromatic' too. The Δδ values of the tetraepoxy[36]annulenes(6.4.6.4) ( 2a – c ; Δδ=2.3 – 3.3 ppm) establish that they are still paratropic; they represent the most expanded antiaromatic systems yet known.  相似文献   

8.
The syntheses of 4-(benzo[b]furan-3-yl)piperidines, 4-(benzo[b]furan-2-yl)piperidines and 4-(benzo[b]thiophen-3-yl)piperidines with 5-HT2 antagonist activity are described. Reaction of 1-acetyl-4-(2,4-difluorobenzo-yl)piperidine 2 with methyl glycolate gave methyl 6-fluoro-3-(1-acetylpiperidin-4-yl)benzo[b]furan-2-carboxylate 3 , which was converted to 2-[2-[4-(benzo[b]furan-3-yi)piperidin-1-yl]ethyl-5,6,7,8-tetrahydro-1,2,4-triazolo-[4,3-a]pyridin-3(2H)-one hydrochloride 9 . Analogous benzo[b]furans 17a-d and benzo[b]thiophenes 10a,b and 18a were prepared by a similar method. Cyclization of 4-fluoro-2-(4-pyridinylmethoxy)acetophenones 20a,b afforded 4-(benzo[b]furan-2-yl)pyridines 21a,b , which were converted to 2-[2-[4-(benzo[b]furan-2-yl)-piperidin-1-yl]ethyl-5,6,7,8-tetrahydro-1,2,4-triazolo[4,3-a]pyridin-3(2H)-one hydrochlorides 24a,b. Among them, benzo[b]furans 9 and 17a,d and benzo[b]thiophenes 10 and 18a showed potent 5-HT2 antagonist activity in vitro.  相似文献   

9.
In this work, 3,3′-(((1E,1′E)-(H,12H-5,11-methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(ethene-2,1-diyl))bis(1,1-dimethyl-1H-benzo[e]indole-3-ium-2,3-diyl))bis(propane-1-sulfonate) (1), 3,3’-(((1E,1′E)-(6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(ethene-2,1-diyl))bis(3,3-dimethyl-3H-indole-1-ium-2,1-diyl))bis(propane-1-sulfonate) (2), 2,2’-((1E,1′E)-(6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(ethene-2,1-diyl))bis(1,3,3-trimethyl-3H-indol-1-ium) iodide (3) and 2,2’-((1E,1′E)-(6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine-2,8-diyl)bis(ethene-2,1-diyl))bis(1,1,3-trimethyl-1H-benzo[e]indol-3-ium) iodide (4) were designed and synthesized by ethylene bridging of the N-substituted indolium salts and the Tröger’s Base (TB) framework. The probes exhibited a longer absorption and emission wavelength and the emission wavelength of them in dichloromethane (DCM) was more than 600 nm, performed a red fluorescence. All of the probes could work on the extreme acidic and the extreme alkaline environments and showed a good liner response in the working pH range. Especially, 2 and 4 were soluble in water and manifested a good pH sensing in a water system. Also, 1H NMR analysis illustrated how these dyes worked as the pH-sensitive fluorescence probes. In addition, they performed excellent reversibility, high selectivity and good photostability.  相似文献   

10.
Oligomeric Condensation Products of (1 E ,3 E ,5 E )‐1,6‐Di(2‐furyl)hexa‐1,3,5‐triene with Acetaldehyde: Tetrahydro‐tetramethyl‐octaepoxy[60]annulene(6.1.6.1.6.1.6.1) The Ca(NO3)2‐induced condensation of (1E,3E,5E)‐1,6‐di(2‐furyl)hexa‐1,3,5‐triene ( 6 ) with acetaldehyde yields the linear ‘oligomers' 7 – 11 with 2–6 1,6‐di(2‐furyl)hexa‐1,3,5‐triene units and 1–4 acetaldehyde units, besides a cyclic condensation product 12 obtained from 4 equiv. of 6 with 4 equiv. of acetaldehyde. According to spectroscopic studies, 12 is the tetrahydro‐tetramethyl‐octaepoxy[60]annulene(6.1.6.1.6.1.6.1) as the most expanded annulene system known so far. While the dehydrogenation of 12 to give the tetramethyl‐octaepoxy[60]annulene(6.1.6.1.6.1.6.1) cannot be achieved, the oxidation of 12 with Br2 yields a black, in all organic solvents nearly insoluble solid 14 , which possibly is the tetramethyl‐octaepoxy[58]annulene(6.1.6.1.6.1.6.1) dication. Because of the insolubility of 14 , unfortunately most of its spectroscopic data are not available. However, the λmax values in the UV/VIS/NIR spectrum of 14 (Soret and Q bands) are in line with the values of the tetraepoxy[26]annulene(4.2.4.2) dication, the tetraepoxy[30]annulene(4.4.4.4) dication, and the tetraepoxy[34]annulene(6.4.6.4) dication.  相似文献   

11.
Several Z-2-methyl(or phenyl)-4-[α-arylethylidene]-5(4H)-oxazolones 3Z, 4Z were prepared. The results obtained were compared by diazomethane insertion and condensation procedure. In order to synthesize E-2-phenyl-4-[α-arylethylidene]-5(4H)-oxazolones 4E hydrogen bromide isomerization in dry benzene was used.  相似文献   

12.
Bis(trimethylsilyl)amides and -methanides of Yttrium — Molecular Structures of Tris(diethylether-O)lithium-(μ-chloro)-tris[bis(trimethylsilyl)methyl]yttriate, solvent-free Yttrium Tris[bis(trimethylsilyl)amide] as well as the Bis(benzonitrile) Complex The reaction of yttrium(III) chloride with the three-fold molar amount of LiE(SiMe3)2 (E = N, CH) yields the corresponding yttrium derivatives. Yttrium tris-[bis(trimethylsilyl)amide] crystallizes in the space group P3 1c with a = 1 636,3(2), c = 849,3(2) pm, Z = 2. The yttrium atom is surrounded trigonal pyramidal by three nitrogen atoms with Y? N-bond lengths of 222 pm. Benzene molecules are incorporated parallel to the c-axes. The compound with E = CH crystallizes as a (Et2O)3LiCl-adduct in the monoclinic space group P21/n with a = 1 111,8(2), b = 1 865,2(6), c = 2 598,3(9) pm, β = 97,41(3)° and Z = 4. The reaction of yttrium tris[bis(trimethylsilyl)amide] with benzonitrile yields the bis(benzonitrile) complex, which crystallizes in the triclinic space group P1 with a = 1 173,7(2), b = 1 210,3(2), c = 1 912,4(3) pm, α = 94,37(1), β = 103,39(1), γ = 117,24(1)° and Z = 2. The amido ligands are in equatorial, the benzonitrile molecules in axial positions.  相似文献   

13.
Homochiral Diels-Alder cyclodimerization of (±)-6-ethenyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol ( 1 ) followed by oxidation gives (1RS,4RS,4aSR,4bSR,5RS,8RS,8aRS)-8a-ethenyl-1,3,4,4a,4b,5,6,8,8a,9-decahydro-1,4:5,8-diepoxyphenanthrene-2,7-dione ( 18 ). Selective hydrogenation followed by epoxidation produced (1RS,4RS,4aRS,5aRS,6aRS,7RS,10RS,10aSR,10bRS)-6a-ethyl-1,4,5a,6,6a,7,9,10,10a,10b-decahydro-1,4:7,10-diepoxyphenanthro[8a,9-b]oxirene-3,8-dione ( 21 ), which was solvolyzed (Me3SiOSO2CF3, Piv2O) with concomitant pinacol rearrangement involving an acyl-group migration to give a 6-oxo-7-oxabicyclo[2.2.1]hept-2-yl cation intermediate, which finally generated (1RS,3SR,3aRS,4SR,5aRS,6RS,9RS,9aSR,9bSR)-5a-ethyl-1,4,5,5a,6,7,8,9,9a,9b-decahydro-7,10-dioxo-3H-6,9-epoxy-1,3a-ethanonaphtho[1,2-c]furan-3,4-diyl bis(2,2-dimethylpropanoate) ( 24 ). Photo-reductive 7-oxa bridge opening of 24 , followed by water elimination and silylation, provided (1RS,3SR,3aRS,4SR,5aSR,9aSR,9bSR)-7-{[(tert-butyl)dimethylsilyl]oxy}-5a-ethyl-1,4,5,5a,9a,9b-hexahydro-10-oxo-3H-1,3-ethanonaphtho[1,2-c]furan-3,4-diyl bis(2,2-dimethylpropanoate) ( 34 ). Reduction of 34 with NaBH4 in MeOH followed by desilylation and alcohol protection produced (1RS,3RS,3aRS,4SR,5aSR,9aSR,9bSR)-5a-ethyl-2,3,3a,4,5,5a,6,7,9a,9b-decahydro-1,3-bis(methoxymethoxy)-3a-[(methoxymethoxy)methyl]-7-oxo-1H-benz[e]inden-4-yl 2,2-dimethylpropanoate ( 5 ), a polyoxy-substituted decahydro-1H-benz[e]indene derivative with cis-transoid-trans junction for the two cyclohexane and the cyclopentane rings bearing an angular 3a-(oxymethyl) substituent.  相似文献   

14.
As bifunctional reagents, bis(tosyloxyethoxy)benzenes can react with p-tert-butylcalix[4]arene or p-tert-butylthiacalix[4]arene to afford intramolecularly bridged (1+1) or intermolecularly bridged (2+2) products. It was found that the bridging pattern strongly depended on the structure of bis(tosyloxyethoxy)benzene and the kind of calixarene. For the ortho-isomer of bis(tosyloxyethoxy)benzene, intramolecularly bridged calix[4]arene and thiacalix[4]arene were the main products. For the para-isomer, the bridging reaction was in a (2+2) fashion. As for the meta-isomer, double thiacalix[4]arene and intramolecularly bridged calix[4]crown were synthesized.  相似文献   

15.
The electrospray tandem mass spectra (ESI-MS/MS) of the three N,N′-bis[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]spermidines 1–3 displayed the same fragment-ion signals. These isomers could not be differentiated by ESI-MS/MS, since their fragmentation patterns are similar. (E,E)-N-(3-[15N]Aminopropyl)-3,3′-bis(4- hydroxyphenyl)-N,N′-(butane-1,4-diyl)bis[prop-2-enamide] ([15N(1)])-( 1 ) was synthesized in order to get further information about the fragmentation mechanisms. The comparison of the ESI-MS/MS of 1 and [15N(1)]- 1 revealed a transamidation, the Zip reaction, under mass-spectral conditions of the [ 1 + H]+ ions. Because of this reaction, the three isomers 1–3 could not be distinguished.  相似文献   

16.
The first synthesis of (Z)-neomanoalide ( 4 ) and an improved synthesis of its (E)-isomer 3 was accomplished in a concise, regiocontrolled manner by exploiting 2-[(tert-butyl)dimethylsiloxy]-4{[(tert-butyl)dimethylsiloxy]-methyl}furan ( 6 ) as the key reagent. Lithiation of 6 and subsequent reaction with the (2Z)- or (2E)-isomer of (6E)-3-{[(tert-butyl)dimethylsiloxy]methyl}-7-methyl-9-(2′,6′,6′-trimethylcyclohex-1′-enyl)nona-2,6-dienyl bromide ( 5 ), followed by hydrolysis, afforded the corresponding neomanoalide.  相似文献   

17.
Rose bengal-sensitized photooxygenation of 4-propyl-4-octene ( 1 ) in MeOH/Me2CHOH 1:1 (v/v) and MeOH/H2O 95:5 followed by reduction gave (E)-4-propyl-5-octen-4-ol ( 4 ), its (Z)-isomer 5 , (E)-5-propyl-5-octen-4-ol ( 6 ), and its (Z)-isomer 7 . Analogously, (E)-4-propyl[1,1,1-2H3]oct-4-ene ( 2 ) gave (E)-4-propyl[1,1,1-2H3]oct-5-en-4-ol ( 14 ), its (Z)-isomer 15 , (E)-5-[3′,3′,3′-2H3]propyl-5-octen-4-ol ( 16 ), its (Z)-isomer 17 , and the corresponding [8,8,8-2H3]-isomers 18 and 19 (see Scheme 1). The proportions of 4–7 were carefully determined by GC between 10% and 85% conversion of 1 and were constant within this range. The labeled substrate 2 was photooxygenated in two high-conversion experiments, and after reduction, the ratios 16/18 and 17/19 were determined by NMR. Isotope effects in 2 were neglected and the proportions of corresponding products from 1 and 2 assumed to be similar (% 4 ≈? % 14 ; % 5 ≈? % 15 ; % 6 ≈? % ( 16 + 18 ): % 7 ≈? % ( 17 + 19 )). Combination of these proportions with the ratios 16/18 and 17/19 led to an estimate of the proportions of hydroperoxides formed from 2 . Accordingly, singlet oxygen ene additions at the disubstituted side of 2 are preferred (ca. 90%). The previously studied trisubstituted olefins 20–25 exhibited the same preference, but had both CH3 and higher alkyl substituents on the double bond. In these substrates, CH3 groups syn to the lone alkyl or CH3 group appear to be more reactive than CH2 groups at that site beyond a statistical bias.  相似文献   

18.
The photochemical reaction of Mn2(CO)10 with cis-,trans-2,4-hexadiene yields three tetracarbonyl-η3-enyl-manganese complexes with E-2,4-hexadien-1-yl, EE-3-hexen-2-yl EZ-3-hexen-2-yl ligands. In an unexpected side-reaction, heptacarbonyl-μ-(2,5:2–5-η-2,4-hexadiene-2,5-diyl)dimanganese is formed. This novel dinuclear manganacyclopentadiene complex was characterized by C and H elemental analysis, IR and 1H NMR spectroscopy, and by X-ray structure analysis.  相似文献   

19.
6-Cyanobenzo[b]furan-2-boronic acid pinacol ester (10) is a potentially useful two-point scaffold for the construction of specific compounds or compound libraries with benzofuran cores. Using a per-iodination/de-iodination strategy coupled with Sonogashira alkynylation and Cu-catalyzed heteroannulation, we have developed a procedure that allows the preparation of benzo[b]furan-6-carbonitrile (9) and 6-cyanobenzo[b]furan-2-boronic acid pinacol ester (10) in gram quantities.

Supplemental materials are available for this article. Go to the publisher's online edition of Synthetic Communications® to view the free supplemental file.  相似文献   

20.
Stereoselective Syntheses of (Z)-(10-Methoxy-4H-benzo[4,5]cyclohepta[1,2-b]thiophen-4-ylidene)acetic Acid Two stereoselective syntheses for the antiinflammatory compound 1 ((Z)-isomer) are described. In the first approach (Strategy A, Scheme 1) the stereoselective synthesis of 1 was realized via the bicyclic compound 11 under thermodynamic conditions, followed by a thiophene annelation with retention of the double-bond geometry (Schemes 2–4). Optimized conditions were necessary to avoid (E/Z)-isomerization during annelation. In the second approach (Strategy B, Scheme 1), diastereoisomer 17b was obtained selectively from a mixture of the diastereoisomers 17b and 18b by combining thermodynamic epimerization and solubility differences (Scheme 5). Diastereoisomer 17b was converted into the tricyclic compound 23 using a novel thiophene annelation method which we described recently (Scheme 6). In a final step, a stereospecific ‘syn’-elimination transformed the sulfoxide 24 into the target compound 1 (Scheme 7). To avoid (E/Z)-isomerization, it was necessary to trap the sulfenic acid liberated during the reaction. The key reactions of both approaches are highly stereoselective (> 97:3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号