首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
In this work, zinc–hydroxyapatite (Zn–HA) and zinc–hydroxyapatite–titania (Zn–HA–TiO2) nanocomposite coatings were electrodeposited onto a NiTi shape memory alloy, using a chloride zinc plating bath. The structure of the composite coatings was characterized by X‐ray diffraction, scanning electron microscopy and high‐resolution transmission electron microscopy. According to the results, the Zn–HA–TiO2 coating exhibited a plate‐like surface morphology, where the addition of the nanoparticles caused to an increase in roughness. It was also found that due to applying a proper stirring procedure during co‐deposition, a homogenous dispersion of the nanoparticles in the coatings was achieved. Also, the addition of the TiO2 nanoparticles to the Zn–HA–TiO2 coating enhanced the microhardness and wear resistance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Cu-TiO2 nanocomposites were prepared by electrodeposition method onto copper substrate using an acid copper plating bath containing dispersed nanosized TiO2. The composition of codeposited TiO2 nanoparticles in the composite coatings was controlled by the addition of different concentrations of TiO2 nanoparticles in the bath solution. The average crystallite size was calculated by using X-ray diffraction analysis and it was ~32 nm for electrodeposited copper and ~33 nm for Cu-TiO2 composite coatings. The crystallite structure was fcc for electrodeposited copper and Cu-TiO2 nanocomposite coatings. The surface morphology and composition of the nanocomposites were examined by scanning electron microscopy and energy dispersive X-ray spectroscopy analysis. The effect of TiO2 content on the corrosion and wear resistance properties of the nanocomposite coatings was also presented. The codeposited TiO2 nanoparticles in the deposit increased the corrosion and wear resistance, which were closely related with TiO2 content in the nanocomposites. The wear resistance and microhardness of the Cu-TiO2 nanocomposite coatings were higher than electrodeposited copper. The corrosion resistance property of the electrodeposited copper and Cu-TiO2 nanocomposite coatings was evaluated by electrochemical impedance and Tafel polarization studies. Cu-TiO2 composite coatings were more corrosion resistant than electrodeposited copper.  相似文献   

3.
Two kinds of biocompatible coatings were produced in order to improve the corrosion resistance of nickel titanium (NiTi) alloy. A titanium oxide–titanium (TiO2–Ti) composite was coated on NiTi alloy using electrophoretic method. After the coating process, the samples were heat‐treated at 1000 °C in two tube furnaces, the first one in argon atmosphere and the second one in nitrogen atmosphere at 1000 °C. The morphology and phase analysis of coatings were investigated using scanning electron microscopy and X‐ray diffraction analysis, respectively. The electrochemical behavior of the NiTi and coated samples was examined using polarization and electrochemical impedance spectroscopy tests. Electrochemical tests in simulated body fluid demonstrated a considerable increase in corrosion resistance of composite‐coated NiTi specimens compared to the non‐coated one. The heat‐treated composite coating sample in nitrogen atmosphere had a higher level of corrosion resistance compared to the heat‐treated sample in argon atmosphere, which is mainly due to having nitride phases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Composite Ni–P/nano‐TiO2 coatings were prepared by simultaneous electroless deposition of Ni–P and nano‐TiO2 on a low carbon steel substrate. The deposition was carried out from stirred solutions containing suspended nano‐TiO2 particles. The Ni–P and Ni–P/nano‐TiO2 coatings before and after heat treatment were characterized by X‐ray diffraction, scanning electron microscopy and energy dispersive X‐ray spectroscopy. The micro‐structural morphologies of the coatings significantly varied with the nano‐TiO2 content. The corrosion resistance of as‐plated and heat‐treated Ni–P and Ni–P/nano‐TiO2 coatings was investigated by anodic polarization, Tafel plots and electrochemical impedance spectroscopic (EIS) studies in 3.5% NaCl solution. Ni–P/nano‐TiO2 coating exhibited superior corrosion resistance over Ni–P coating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Titania–sulfur (TiO2–S) composite cathode materials were synthesized for lithium–sulfur batteries. The composites were characterized and examined by X-ray diffraction, nitrogen adsorption/desorption measurements, scanning electron microscopy, and electrochemical methods, such as cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. It is found that the mesoporous TiO2 and sulfur particles are uniformly distributed in the composite after a melt-diffusion process. When evaluating the electrochemical properties of as-prepared TiO2–S composite as cathode materials in lithium–sulfur batteries, it exhibits much improved cyclical stability and high rate performance. The results showed that an initial discharge specific capacity of 1,460 mAh/g at 0.2 C and capacity retention ratio of 46.6 % over 100 cycles of composite cathode, which are higher than that of pristine sulfur. The improvements of electrochemical performances were due to the good dispersion of sulfur in the pores of TiO2 particles and the excellent adsorbing effect on polysulfides of TiO2.  相似文献   

6.
Electroless Ni–P and Ni–P–TiCN composite coatings have been deposited successfully on Al substrates. Scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) techniques were applied to study the surface morphology and the chemical composition of the deposited films. Moreover, X‐ray diffraction (XRD) proved that Ni–P and Ni–P–TiCN deposits have amorphous structures. The properties of Ni–P–TiCN/Al composite films such as hardness, corrosion resistance and electrocatalytic activity were examined and compared with that of Ni–P/Al film. The results of hardness measurements reveal that the presence of TiCN particles with Ni–P matrix improves its hardness. Additionally, the performance against corrosion was examined using Tafel lines and electrochemical impedance spectroscopy techniques in both of 0.6 M NaCl and a mixture of 0.5 M H2SO4 with 2 ppm HF solutions. The results indicate that the incorporation of high dispersed TiCN particles into Ni–P matrix led to a positive shift of the corrosion potential and an increase in the corrosion resistance for all aluminum substrates after their coating with Ni–P–TiCN. In addition, Ni–P–TiCN/Al electrodes showed a higher electrochemical catalytic activity and stability toward methanol oxidation in 0.5 M NaOH solution compared with that of Ni–P/Al. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Titanium dioxide nanoparticle/gold nanoparticle/carbon nanotube (TiO2/Au/CNT) nanocomposites were synthesized, and then characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). A TiO2/Au/CNT nanocomposite-modified glassy carbon (GC) electrode was prepared using the drop coating method and was investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometric current–time response (I-T). The modified material is redox-active. The nonenzymatically detected amount of ascorbic acid (AA) on the TiO2/Au/CNT electrode showed a linear relationship with the AA concentration, for concentrations from 0.01 to 0.08 μM; the sensitivity was 117,776.36 μA?·?cm?2?·?(mM)?1, and the detection limit was 0.01 μM (S/N?=?3). The results indicated that the TiO2/Au/CNT nanocomposite-modified GC electrode exhibited high electrocatalytic activity toward AA. This paper describes materials consisting of a network of TiO2, Au, and MWCNTs, and the investigation of their synergistic effects in the detection of AA.  相似文献   

8.
After preparing the precursor by a liquid precipitation method, a series of tin-zinc composite oxides with different components and structures were synthesized as the anode materials for lithium ion batteries when the precursor was pyrolyzed at different temperatures. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and electrochemical measurements. The reversible capacity of amorphous ZnSnO3 is 844 mA · h/g in the first cycle and the charge capacity is 695 mA · h/g in the tenth cycle. The reversible capacity of ZnO · SnO2 is 845 mA · h/g in the first cycle and the charge capacity is 508 mA · h/g in the tenth cycle. The reversible capacity of SnO2 · Zn2SnO4 is 758 mA · h/g in the first cycle and the charge capacity is 455 mA · h/g in the tenth cycle. Results show that amorphous ZnSnO3 exhibits the best electrochemical property among all of the tin-zinc composite oxides. With the formation of crystallites in the samples, the electrochemical property of the tin-zinc composite oxides decreases. Translated from Chem J Chin Univ, 2006, 27(12): 2252–2255 [译自: 高等学校化学学报]  相似文献   

9.
Different compositions of SnO2–TiO2 composite electrode coatings were prepared on conducting ITO glass substrates and photoelectrochemical measurements were carried out on the coated substrates under illumination with ultraviolet light. Photopotential as well as polarization measurements were made on the samples to evaluate their performance with regard to application for cathodic protection of metals against corrosion. A composite electrode bearing SnO2 and TiO2 in a 1:1 molar ratio was found to exhibit the maximum photocurrent and a maximum lowering of potential under illumination when compared to the other compositions. A possibility of using a pure SnO2 coating for cathodic protection of metals against corrosion under dark conditions was also explored.  相似文献   

10.
Several silica‐based solutions with 50 g/l of SiO2 were prepared from sodium silicate solutions and silica sol; the silicate conversion coatings were obtained by immersing hot‐dip galvanized steel sheets in these solutions. These solutions were characterized using high‐resolution transmission electron microscopy and 29Si nuclear magnetic resonance; the morphology of the coatings was observed by SEM and atomic force microscopy while the corrosion resistance was evaluated by electrochemical measurements as well as neutral salt spray tests. The results show that the coatings obtained from the single silica sol solution had poor adhesion and the coating obtained from the sodium silicate solution with low SiO2/Na2O molar ratio was uneven. By adding the silica sol to the silicate solution with low molar ratio, uniform coatings with better protection property were obtained. According to the results of 29Si nuclear magnetic resonance spectra, the effects of the distribution of silicate anions with various polymerization degrees in the silica‐based solutions on the microstructure and corrosion resistance of the silicate coatings are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
IR spectroscopy combined with thermogravimetry was used to investigate the effect of the pretreatment temperature on the degree of coverage of the surface of oxide photocatalysts, TiO2, ZnO, CeO2, and Zn2+/TiO2, with water. At room temperature, the amount of adsorbed water per unit area of photocatalysts in the air decreases in the row: ZnO ≥ CeO2 > TiO2, whereas the temperature needed for complete removal of physically adsorbed water from the studied oxides decreases in the reverse order. Water is removed from the ZnO surface by evacuation at room temperature; in the case of CeO2 and TiO2, it desorbs at 200 and 300 °С, respectively. The terminal OH groups on the oxide surface are the most strongly bonded with adsorbed water. In the zinc modified TiO2, the terminal OH groups are firstly replaced by Zn cations, which causes both hydrophobization of the samples under atmospheric conditions and a decrease in the temperature at which physically adsorbed water is released from the surface. Evacuation of ZnO at 350 °C removes the surface oxygen and results in the generation of the surface defect sites. This causes strong absorption in the IR spectra in the region of 1000—4000 cm–1. The formation of surface defects probably causes the appearance of donor levels in the band gap. The energy of the transition of electrons from these levels to the conduction band corresponds to the energy of the IR radiation. After oxidation of such samples in O2 at 350 °C, strong absorption in the IR spectra disappears.  相似文献   

12.
A series of cobalt catalysts supported on TiO2, SiO2, or a mixture of them, incorporated with some added oxides from Groups III, IV, and V of transition metals, were prepared using the incipient wetness impregnation method. For better evaluation of catalysts, the physicochemical properties of catalysts were investigated using brunauer-emmett-teller (BET), H2-TPR, NH3-TPD, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy techniques. The performance of catalysts was studied in a fixed-bed reactor at 220°C, 24 bar, gas hourly space velocity (GHSV) of 2 L/h/gcat., and H2 to CO ratio of 2. The results indicate that CeO2 and ZrO2 as promoters can enhance the CO conversion and catalyst activity and enhance the selectivities of higher-molecular-weight products. On the contrary, the presence of V2O5 as a promoter undesirably suppressed CO conversion and, consequently, catalytic performance. The results show that the catalyst included CeO2, was supported on a binary mixture of SiO2 and TiO2, and has significant improved activity and C5+ selectivity. From the reactor test, values of 156.48 mmol COconv./gCo/h activity, and 0.17 gC3+/(h.gcat.) productivity have been obtained for this catalyst.  相似文献   

13.
Poly(o‐anisidine) (POA) and poly(o‐anisidine)‐TiO2 (POA‐TiO2) nanocomposite coatings on aluminum alloy 3004 (AA3004) have been investigated by using the galvanostatic method. The electrosynthesized coatings were characterized by FT ‐ IR spectroscopy, XRD, SEM ‐ EDX and SEM. The corrosion protection performance of POA and POA‐TiO2 nanocomposite coatings was investigated in the 3.5% NaCl solution by using potentiodynamic polarization technique and electrochemical impedance spectroscopy. The results show that the corrosion rate of the nanocomposite coatings is about 900 times lower than the bare AA3004 under optimal conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The influence of SiO2, TiO2, and ZrO2 on the structural and redox properties of CeO2 were systematically investigated by various techniques namely, X-ray diffraction (XRD), Raman spectroscopy (RS), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HREM), BET surface area, and thermogravimetry methods. The effect of supporting oxides on the crystal modification of ceria was also mainly focused. The investigated oxides were obtained by soft chemical routes with ultrahigh dilute solutions and were subjected to thermal treatments from 773 to 1073 K. The XRD results suggest that the CeO2–SiO2 sample primarily consists of nanocrystalline CeO2 on the amorphous SiO2 surface. Both crystalline CeO2 and TiO2-anatase phases were noted in the case of CeO2–TiO2 sample. Formation of cubic Ce0.75Zr0.25O2 and Ce0.6Zr0.4O2 (at 1073 K) were observed in the case of CeO2–ZrO2 sample. The cell ‘a’ parameter estimations revealed an expansion of the ceria lattice in the case of CeO2–TiO2, while a contraction is noted in the case of CeO2–ZrO2. The DRS studies suggest that the supporting oxides significantly influence the band gap energy of CeO2. Raman measurements disclose the presence of oxygen vacancies, lattice defects, and displacement of oxide ions from their normal lattice positions in the case of CeO2–TiO2 and CeO2–ZrO2 samples. The XPS studies revealed the presence of silica, titania, and zirconia in their highest oxidation states, Si(IV), Ti(IV), and Zr(IV) at the surface of the materials. Cerium is present in both Ce4+ and Ce3+ oxidation states. The HREM results reveal well-dispersed CeO2 nanocrystals over the amorphous SiO2 matrix in the case of CeO2–SiO2, isolated CeO2 and TiO2 (A) nanocrystals and some overlapping regions in the case of CeO2–TiO2, and nanosized CeO2 and Ce–Zr oxides in the case of CeO2–ZrO2 sample. The exact structural features of these crystals as determined by digital diffraction analysis of HREM experimental images reveal that the CeO2 is mainly in cubic fluorite geometry. The oxygen storage capacity (OSC) as determined by thermogravimetry reveals that the OSC of mixed oxides is more than that of pure CeO2 and the CeO2–ZrO2 exhibits highest OSC.  相似文献   

15.
Cerium oxide (CeO2) is a potential corrosion inhibitor for aluminium, and titanium oxide (TiO2) is an efficient anti-fouling agent in the marine environment. The present study explored the possibility of incorporating CeO2 and TiO2 in aluminium to prepare a metal matrix composite that could have high corrosion and biofouling resistance under marine conditions. Such incorporation of CeO2 and TiO2 in pure aluminium offered high resistance to corrosion and biogrowth under marine conditions as evidenced during different tests. The specimens exhibited more anodic and stable open circuit potential throughout the period of the study. The optimum concentration of CeO2 and TiO2 was found to be 0.2 and 0.1%, respectively. The present results lay emphasis on the potential scope of the use of CeO2- and TiO2-incorporated aluminium in marine environments.  相似文献   

16.
Pure zinc and Zn–MoS2 composite coatings were prepared by electrodeposition from zinc sulfate–chloride bath containing uniformly dispersed MoS2 nanoparticles. The effect of MoS2 on the deposition properties morphology, crystallographic orientation, and corrosion behavior were studied. The electrokinetic properties (zeta potential) and size distribution statistics in plating bath for the particles were evaluated using dynamic light scattering experiments. The Zn and Zn–MoS2 deposition process was studied by linear polarization and cyclic voltammetry. Scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction analysis, and potentiodynamic polarization measurements were used to characterize the coatings. The addition of MoS2 to the electrolyte significantly changed the microstructure and crystallographic orientation of the zinc deposits and enhanced the corrosion resistance of the coatings. The morphological and electrochemical properties of the zinc coatings were observed to be significantly affected by the incorporation of MoS2 particles into the zinc matrix.  相似文献   

17.
Compositionally modulated multilayered alloy (CMMA) coatings of Zn-Fe were developed from acid chloride baths by single bath technique. The production and properties of CMMA Zn-Fe coatings were tailored as a function of switching cathode current densities (SCCD’s) and thickness of individual layers. Corrosion rates (CR) were measured by electrochemical methods. Corrosion resistances were found to vary with SCCD’s and the number of sub layers in the deposit. SCCD’s were optimized for production of Zn-Fe CMMA electroplates showing peak performance against corrosion. The formation of discrete Zn-Fe alloy layers having different compositions in the deposits were demonstrated by scanning electron microscopy (SEM). Improvements in the corrosion resistance of multilayered alloys are due to the inherent barrier properties of CMMA coatings as evidenced by electrochemical impedance spectroscopy (EIS). Corrosion resistance afforded by Zn-Fe CMMA coatings are explained in terms of the n-type semiconductor films at the interface, supported by Mott-Schottky’s plot. It was observed that the alloy with high w(Fe) on the top showed better corrosion resistance compared to that with the less w(Fe) on top. At optimum SCCD’s of 3.0—5.5 A•dm-2, a Zn-Fe CMMA coatings with 600 sub layers showed ca. 45 times better corrosion resistance than conventional Zn-Fe alloy of the same thickness. The deposit showed no red rust even up to 1130 h in salt spray test.  相似文献   

18.
A hollow carbon nanofiber hybrid nanostructure anchored with titanium dioxide (HCNF@TiO2) was prepared as a matrix for effective trapping of sulfur and polysulfides as a cathode material for Li–S batteries. The synthesized composites were characterized and examined by X‐ray diffraction, nitrogen adsorption–desorption measurements, field‐emission scanning electron microscopy, scanning transmission electron microscopy, and electrochemical methods such as galvanostatic charge/discharge, rate performance, and electrochemical impedance spectroscopy tests. The obtained HCNF@TiO2–S composite showed a clear core–shell structure with TiO2 nanoparticles coating the surface of the HCNF and sulfur homogeneously distributed in the coating layer. The HCNF@TiO2–S composite exhibited much better electrochemical performance than the HCNF–S composite, which delivered an initial discharge capacity of 1040 mA h g?1 and maintained 650 mAh g?1 after 200 cycles at a 0.5 C rate. The improvements of electrochemical performances might be attributed to the unique hybrid nanostructure of HCNF@TiO2 and good dispersion of sulfur in the HCNF@TiO2–S composite.  相似文献   

19.
Pt–CeO2/C, Pt–TiO2/C, and Pt–ZrO2/C electrocatalysts were prepared by using a modified microwave‐assisted polyol process. Physical characterization was performed by using XRD, TEM, and EDX analyses. The incorporation of different metal oxides increased the dispersion degree of Pt nanoparticles and reduced their diameter to 2.50 and 2.33 nm when TiO2 and ZrO2 were introduced to Pt/C, respectively. The electrocatalytic activity of various electrocatalysts was examined towards methanol oxidation in H2SO4 solution by using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. Among the studied composites, Pt–ZrO2/C was selected to be a candidate electrocatalyst for better electrochemical performance in direct methanol fuel cells.  相似文献   

20.
The corrosion behavior of electrodeposited nanocrystalline (NC) zinc coatings with an average grain size of 43 nm was investigated in 3.5% NaCl solutions in comparison with conventional polycrystalline (PC) zinc coatings by using electrochemical measurement and surface analysis techniques. Both polarization curve and electrochemical impedance spectroscopy (EIS) results indicate that NC and PC coatings are in active state at the corrosion potentials, and NC coatings have much higher corrosion resistance than PC ones. The corrosion products on both coating surfaces are mainly composed of ZnO and Zn5(OH)8Cl2·H2O, but the corrosion products can form a relatively more protective layer on NC coating surfaces than on PC coatings. The EIS characteristics and corrosion processes of PC and NC zinc coatings during 330 h of immersion were discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号