首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamics of a superconducting (SC) qubit interacting with a field under decoherence with and without time-dependent coupling effect is analyzed. Quantum features like the collapse–revivals for the dynamics of population inversion, sudden birth and sudden death of entanglement, and statistical properties are investigated under the phase damping effect. Analytic results for certain parametric conditions are obtained. We analyze the influence of decoherence on the negativity and Wehrl entropy for different values of the physical parameters. We also explore an interesting relation between the SC-field entanglement and Wehrl entropy behavior during the time evolution. We show that the amount of SC-field entanglement can be enhanced as the field tends to be more classical. The studied model of SC-field system with the time-dependent coupling has high practical importance due to their experimental accessibility which may open new perspectives in different tasks of quantum formation processing.  相似文献   

2.
The dynamics of a superconducting (SC) qubit interacting with a field under decoherence with and without time-dependent coupling effect is analyzed. Quantum features like the collapse–revivals for the dynamics of population inversion, sudden birth and sudden death of entanglement, and statistical properties are investigated under the phase damping effect. Analytic results for certain parametric conditions are obtained. We analyze the influence of decoherence on the negativity and Wehrl entropy for different values of the physical parameters. We also explore an interesting relation between the SC-field entanglement and Wehrl entropy behavior during the time evolution. We show that the amount of SC-field entanglement can be enhanced as the field tends to be more classical. The studied model of SC-field system with the time-dependent coupling has high practical importance due to their experimental accessibility which may open new perspectives in different tasks of quantum formation processing.  相似文献   

3.
We study the entanglement of the superconducting charge qubit with the quantized electromagnetic field in a microwave cavity. It can be controlled dynamically by a classical external field threading the SQUID within the charge qubit. Utilizing the controllable quantum entanglement, we can demonstrate the dynamic process of the quantum storage of information carried by charge qubit. On the other hand, based on this engineered quantum entanglement, we can also demonstrate a progressive decoherence of charge qubit with quantum jump due to the coupling with the cavity field in quasi-classical state.  相似文献   

4.
We investigate the entanglement dynamics of a quantum system consisting of three superconducting charge qubits (SCQs) interacting with a microwave field. For separable and entangled states of the SCQs, the evolutions are studied under various photon numbers of cavity field. The results show that the amplitude and period of the bipartite entanglement square concurrences can be controlled by the choice of initial states of SCQs and photon numberof cavity field, respectively. This simple model of a quantum register allows us to understand the dynamic process of the quantum storage of information carried by charge qubit.  相似文献   

5.
We demonstrate the controllable generation of multi-photon Fock states in circuit quantum electrodynamics (circuit QED). The external bias flux regulated by a counter can effectively adjust the bias time on each superconducting flux qubit so that each flux qubit can pass in turn through the circuit cavity and thereby avoid the effect of decoherence. We further investigate the quantum correlation dynamics of coupling superconducting qubits in a Fock state. The results reveal that the lower the photon number of the light field in the number state, the stronger the interaction between qubits is, then the more beneficial to maintaining entanglement between qubits it will be.  相似文献   

6.
The dynamics of entanglement and mixedness of a superconducting qubit strongly coupled to a cavity field induced by a cavity damping governed by a master equation are investigated. It is found that, asymptotic decays as well as finite time disentanglement depend on the parameter of the dissipation, which leads to the existence of the entanglement sudden death.  相似文献   

7.
We study the dynamics of the entropy correlations and entanglement in a system of interaction of a superconducting charge qubit with a single-mode resonant cavity subject to noise considered as two-state random phase telegraph noise. We show that although the noise has an apparent suppressing effect on the evolution of the entropies of the qubit and the field and also on the entanglement in the system, the entropy exchange between the qubit and the
field is independent of it during the time evolution of the system.  相似文献   

8.
By making use of the dynamical algebraic method we investigate a quantum system consisting of superconducting qubits interacting with data buses, where the qubits are driven by time-dependent electromagnetic field and obtain an explicit expression of time evolution operator. Furthermore, we explore the entanglement dynamics and the influence of the time-dependent electromagnetic field and the initial state on the entanglement sudden death and birth for the system. It is shown that the entanglement between the qubit and bus as well as the entanglement sudden death and birth can be controlled by the time-dependent electromagnetic field.  相似文献   

9.
Taking the intrinsic decoherence effect into account, we investigate the entanglement dynamics of a superconducting charge qubit in a single-mode optical cavity. Concurrence, as the measure of entanglement of the coupled field-junction system, is calculated. In comparison, we also consider the entanglement of the system by using the entanglement parameter based on the ratio between mutual entropy and partial Von-Neumann entropy to investigate how the intrinsic decoherence affects the entanglement of the coupling system. Our results show that the evolution of the entanglement parameter has the behaviour similar to the concurrence and it is thus the well measure of entanglement for the mixed state in such a coupling system.  相似文献   

10.
We investigate entanglement and mixedness of a superconducting qubit coupled to the damped cavity field. We introduce a new measure for the mixedness and find that the phase damping of the cavity leads to simultaneous long-death of the entropy squeezing, the purity of the qubit states, and the entanglement of the field–qubit system.  相似文献   

11.
We have investigated the effect of counter-rotating terms on the dynamics of entanglement and quantum discord between two identical atoms interacting with a lossy single mode cavity field for a system initially in a vacuum state. The counter-rotating terms are found to lead to steady states in the long-time limit which can have high quantum discord, but have no entanglement. The effect of cavity decay rate on this steady-state quantum discord has been also investigated, surprisingly, the increase in cavity decay rate is found to enhance the steady-state quantum discord.  相似文献   

12.
A single-mode microwave cavity field, coupled to its reservoir, interacting generally with a superconducting charge qubit is considered. Using a certain canonical transformation for the qubit states, the system is transformed into the usual Jaynes-Cummings model. The solution of the master equation of this system, in the case of a high-Q cavity is obtained. The temporal evolution of the population inversion is explored. The effects of cavity damping on the purity of the qubit, the field and the global system state are studied. It is found that due to the coupling between the system and environment, the purity is lost. The entanglement is compared with total correlation. It is found that, with the damping parameter, the asymptotic value of the correlation measure is not null, since the global system evolves to a classically correlated state. The negativity is used as an indicator of the degree of entanglement between the qubit and the field. The results indicate the sensitivity of these aspects to change of the damping parameter.  相似文献   

13.
We study the time evolution of the quantum Fisher information of a system whose the dynamics is described by the phase-damped model. We discuss the correlation between the Fisher information and entanglement dynamics of a qubit and single-mode quantized field in a coherent state inside phase-damped cavity. Analytic results under certain parametric conditions are obtained, by means of which we analyze the influence of dissipation on the negativity and quantum Fisher information for different values of the estimator parameter. An interesting monotonic relation between the Fisher information and nonlocal correlation behavior is observed during the time evolution.  相似文献   

14.
By considering the intrinsic decoherence effect, we investigate the entropy exchange and entanglement in the interacting system of a superconducting charge qubit coupled to a single-mode optical cavity. We found that although the intrinsic decoherence leads to an irreversible evolution of the interacting system due to a suppression of coherent quantum features through the decay of off-diagonal matrix elements of the density operator, and has an apparently influence on the partial entropies of the two-component subsystems, it dose not destroy entropy exchange behavior. In addition, the lower bound of the concurrence, as the measure of entanglement of the coupling system, is calculated. It is shown that the evolution of entanglement is sensitive to the change of the intrinsic decoherence.  相似文献   

15.
基于耦合超导量子比特系统模型下,在非马尔科夫环境中利用共生纠缠的方法分析了耦合系统纠缠的产生及其动力学的演化。研究了不同初始纠缠态下的纠缠猝死(ESD)和纠缠再生(ESB)现象;主要分析了系统耦合强度、库的截止频率与系统的振荡频率间的比值、温度和约瑟夫森能级差对纠缠演化的影响。结果表明:系统纠缠取决于初始纠缠态和系统的耦合强度J,并且通过调节以上非马尔科夫环境的相干参数可以延长解纠缠时间来确保量子计算过程中的应用和量子信息的实现。  相似文献   

16.
In this paper, we investigate the entanglement dynamics anddecoherence in the interacting system of a strongly driventwo-level atom and a single mode vacuum field in the presence ofdissipation for the cavity field. Starting with an initial productstate with the atom in a general pure state and the field in avacuum state, we show that the final density matrix is supportedon \({\mathbb C}^2\otimes{\mathbb C}^2\) space, and therefore, theconcurrence can be used as a measure of entanglement between theatom and the field. The influences of the cavity decay on thequantum entanglement of the system are also discussed. We alsoexamine the Bell-CHSH violation between the atom and the field andshow that there are entangled states for which the Bell-BCSHinequality is not violated. Using the above system as a quantumchannel, we also investigate the quantum teleportation of ageneric qubit state and also a two-qubit entangled state, and showthat in both cases the atom-field entangled state can be useful toteleport an unknown state with fidelity better than any classicalchannel.  相似文献   

17.
We study the dynamics of the von Neumann entropy, Wehrl entropy, and Wehrl phase distribution for a single four-level ladder-type atom interacting with a one-mode cavity field taking into account the atomic motion. We obtain the exact solution of the model using the Schr¨odinger equation under specific initial conditions. Also we investigate the quantum and classical quantifiers of this system in the nonresonant case. We examine the effects of detuning and the atomic motion parameter on the entropies and their density operators. We observe an interesting monotonic relation between the different physical quantities in the case of nonmoving and moving atoms during the time evolution. We show that both the detuning and the atomic motion play important roles in the evolution of the Wehrl entropy, its marginal distributions, entanglement, and atomic populations.  相似文献   

18.
19.
We propose a scheme for generating a maximally entangled state of two three-level superconducting quantum interference devices (SQUIDs) by using a quantized cavity field and classical microwave pluses in cavity. In this scheme, no quantum information will be transferred from the SQUIDs to the cavity since the cavity field is only virtually excited. Thus, the cavity decay is suppressed during the entanglement generation.  相似文献   

20.
Preventing quantum entanglement from decoherence effect is of theoretical and practical importance in the quantum information processing technologies.In this regard,we consider the entanglement dynamics of two identical qubits where the qubits which are coupled to two independent(Markovian and/or non-Markovian) as well as a common reservoir at zero temperature are further interacted with a classical driving laser field.Then,we study the preservation of generated two-qubit entanglement in various situations using the concurrence measure.It is shown that by applying the classical driving field and so the possibility of controlling the Rabi frequency,the amount of entanglement of the two-qubit system is improved in the off-resonance condition between the qubit and the central cavity frequencies(central detuning) in both non-Markovian and Markovian reservoirs.While the central detuning has a constructive role,the detuning between the qubit and the classical field(laser detuning) affects negatively on the entanglement protection.The obtained results show that long-living entanglement in the non-Markovian reservoir is more accessible than in the Markovian reservoir.We demonstrate that,in a common reservoir non-zero stationary entanglement is achievable whenever the two-qubit system is coupled to the reservoir with appropriate values of relative coupling strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号