首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 619 毫秒
1.
The mechanism and kinetics of single-walled carbon nanotube (SWNT) nucleation from Fe- and Ni-carbide nanoparticle precursors have been investigated using quantum chemical molecular dynamics (QM/MD) methods. The dependence of the nucleation mechanism and its kinetics on environmental factors, including temperature and metal-carbide carbon concentration, has also been elucidated. It was observed that SWNT nucleation occurred via three distinct stages, viz. the precipitation of the carbon from the metal-carbide, the formation of a "surface/subsurface" carbide intermediate species, and finally the formation of a nascent sp(2)-hybidrized carbon structure supported by the metal catalyst. The SWNT cap nucleation mechanism itself was unaffected by carbon concentration and/or temperature. However, the kinetics of SWNT nucleation exhibited distinct dependences on these same factors. In particular, SWNT nucleation from Ni(x)C(y) nanoparticles proceeded more favorably compared to nucleation from Fe(x)C(y) nanoparticles. Although SWNT nucleation from Fe(x)C(y) and Ni(x)C(y) nanoparticle precursors occurred via an identical route, the ultimate outcomes of these processes also differed substantially. Explicitly, the Ni(x)-supported sp(2)-hybridized carbon structures tended to encapsulate the catalyst particle itself, whereas the Fe(x)-supported structures tended to form isolated SWNT cap structures on the catalyst surface. These differences in SWNT nucleation kinetics were attributed directly to the relative strengths of the metal-carbon interaction, which also dictates the precipitation of carbon from the nanoparticle bulk and the longevity of the resultant surface/subsurface carbide species. The stability of the surface/subsurface carbide was also influenced by the phase of the nanoparticle itself. The observations agree well with experimentally available data for SWNT growth on iron and nickel catalyst particles.  相似文献   

2.
Density-functional tight-binding molecular dynamics (DFTB/MD) methods were employed to demonstrate single-walled carbon nanotube (SWNT) nucleation resulting from thermal annealing of SiC nanoparticles. SWNT nucleation in this case is preceded by a change of the SiC structure from a crystalline one, to one in which silicon and carbon are segregated. This structural transformation ultimately resulted in the formation of extended polyyne chains on the SiC nanoparticle surface. These polyyne chains subsequently coalesced, forming an extended sp(2)-hybridized carbon cap on the SiC nanoparticle. The kinetics of this process were enhanced significantly at higher temperatures (2500 K), compared to lower temperatures (1200 K) and so directly correlated to the surface premelting behavior of the nanoparticle structure. Analysis of the SiC nanoparticle Lindemann index between 1000 and 3000 K indicated that SWNT nucleation at temperatures below 2600 K occurred in the solid, or quasi-solid, phase. Thus, the traditional vapor-liquid-solid mechanism of SWNT growth does not apply in the case of SiC nanoparticles. Instead, we propose that this example of SWNT nucleation constitutes evidence of a vapor-solid-solid process. This conclusion complements our recent observations regarding SWNT nucleation on SiO(2) nanoparticles (A. J. Page, K. R. S. Chandrakumar, S. Irle and K. Morokuma, J. Am. Chem. Soc., 2011, 133, 621-628). In addition, similarities between the atomistic SWNT nucleation mechanisms on SiC and SiO(2) catalysts provide the first evidence of a catalyst-independent SWNT nucleation mechanism with respect to 'non-traditional' SWNT catalyst species.  相似文献   

3.
The growth of single wall carbon nanotubes (SWNTs) mediated by metal nanoparticles is considered within (i) the surface diffusion growth kinetics model coupled with (ii) a thermal model taking into account heat release of carbon adsorption-desorption on nanotube surface and carbon incorporation into the nanotube wall and (iii) carbon nanotube-inert gas collisional heat exchange. Numerical simulations performed together with analytical estimates reveal various temperature regimes occurring during SWNT growth. During the initial stage, which is characterized by SWNT lengths that are shorter than the surface diffusion length of carbon atoms adsorbed on the SWNT wall, the SWNT temperature remains constant and is significantly higher than that of the ambient gas. After this stage the SWNT temperature decreases towards that of gas and becomes nonuniformly distributed over the length of the SWNT. The rate of SWNT cooling depends on the SWNT-gas collisional energy transfer that, from molecular dynamics simulations, is seen to be efficient only in the SWNT radial direction. The decreasing SWNT temperature may lead to solidification of the catalytic metal nanoparticle terminating SWNT growth or triggering nucleation of a new carbon layer and growth of multiwall carbon nanotubes.  相似文献   

4.
Since the discovery of single-walled carbon nanotubes (SWNTs) in the early 1990s, the most commonly accepted model of SWNT growth on traditional catalysts (i.e., transition metals including Fe, Co, Ni, etc.) is the vapor-liquid-solid (VLS) mechanism. In more recent years, the synthesis of SWNTs on nontraditional catalysts, such as SiO(2), has also been reported. The precise atomistic mechanism explaining SWNT growth on nontraditional catalysts, however, remains unknown. In this work, CH(4) chemical vapor deposition (CVD) and single-walled carbon nanotube (SWNT) nucleation on SiO(2) nanoparticles have been investigated using quantum-chemical molecular dynamics (QM/MD) methods. Upon supply of CH(x) species to the surface of a model SiO(2) nanoparticle, CO was produced as the main chemical product of the CH(4) CVD process, in agreement with a recent experimental investigation [Bachmatiuk et al., ACS Nano 2009, 3, 4098]. The production of CO occurred simultaneously with the carbothermal reduction of the SiO(2) nanoparticle. However, this reduction, and the formation of amorphous SiC, was restricted to the nanoparticle surface, with the core of the SiO(2) nanoparticle remaining oxygen-rich. In cases of high carbon concentration, SWNT nucleation then followed, and was driven by the formation of isolated sp(2)-carbon networks via the gradual coalescence of adjacent polyyne chains. These simulations indicate that the carbon saturation of the SiO(2) surface was a necessary prerequisite for SWNT nucleation. These simulations also indicate that a vapor-solid-solid mechanism, rather than a VLS mechanism, is responsible for SWNT nucleation on SiO(2). Fundamental differences between SWNT nucleation on nontraditional and traditional catalysts are therefore observed.  相似文献   

5.
Single-walled carbon nanotubes (SWNTs) are potential materials for future nanoelectronics. Since the electronic and optical properties of SWNTs strongly depend on tube diameter and chirality, obtaining SWNTs with narrow (n,m) chirality distribution by selective growth or chemical separation has been an active area of research. Here, we demonstrate that a new, bimetallic FeRu catalyst affords SWNT growth with narrow diameter and chirality distribution in methane CVD. At 600 degrees C, methane CVD on FeRu catalyst produced predominantly (6,5) SWNTs according to UV-vis-NIR absorption and photoluminescence excitation/emission (PLE) spectroscopic characterization. At 850 degrees C, the dominant semiconducting species produced are (8,4), (7,6), and (7,5) SWNTs, with much narrower distributions in diameter and chirality than materials grown by other catalysts. Further, we show that narrow diameter/chirality growth combined with chemical separation by ion exchange chromatography (IEC) greatly facilitates achieving single (m,n) SWNT samples, as demonstrated by obtaining highly enriched (8,4) SWNTs with near elimination of metallic SWNTs existing in the as-grown material.  相似文献   

6.
On single-crystal substrates, such as sapphire (alpha-Al 2O 3) and quartz (SiO 2), single-walled carbon nanotubes (SWNTs) align along specific crystallographic axes of the crystal, indicating that the SWNT growth is influenced by the crystal surface. Here, we show that not only the orientation, but also the diameter and chirality of SWNTs are affected by the crystal plane of the sapphire substrate. The aligned SWNTs grown on the A- and R-planes of sapphire have narrower diameter distributions than randomly oriented tubes produced on the C-plane sapphire and amorphous SiO 2. Photoluminescence measurements reveal a striking difference between the aligned SWNTs: near-zigzag tubes are observed on the A-plane and near-armchair tubes on the R-plane. This study shows the route for the diameter and chirality control of SWNTs by surface atomic arrangements of a single-crystal substrate.  相似文献   

7.
We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness.  相似文献   

8.
Chirality is a crucial factor in a single-walled carbon nanotube (SWCNT) because it determines its optical and electronic properties. A chiral angle spanning from 0° to 30° results from twisting of the graphene sheet conforming the nanotube wall and is equivalently expressed by chiral indexes (n,m). However, lack of chirality control during SWCNT synthesis is an obstacle for a widespread use of these materials. Here we use first-principles density functional theory (DFT) and classical molecular dynamics (MD) simulations to propose and illustrate basic concepts supporting that the nanocatalyst structure may act as a template to control the chirality during nanotube synthesis. DFT optimizations of metal cluster (Co and Cu)∕cap systems for caps of various chiralities are used to show that an inverse template effect from the nascent carbon nanostructure over the catalyst may exist in floating catalysts; such effect determines a negligible chirality control. Classical MD simulations are used to investigate the influence of a strongly interacting substrate on the structure of a metal nanocatalyst and illustrate how such interaction may help preserve catalyst crystallinity. Finally, DFT optimizations of carbon structures on stepped (211) and (321) cobalt surfaces are used to demonstrate the template effect imparted by the nanocatalyst surface on the growing carbon structure at early stages of nucleation. It is found that depending on the step structure and type of building block (short chains, single atoms, or hexagonal rings), thermodynamics favor armchair or zigzag termination, which provides guidelines for a chirality controlled process based on tuning the catalyst structure and the type of precursor gas.  相似文献   

9.
Single-walled carbon nanotubes (SWNTs) have remarkable and unique electronic, mechanical, and thermal properties, which are closely related to their chiralities; thus, the chirality-selective recognition/extraction of the SWNTs is one of the central issues in nanotube science. However, any rational materials design enabling one to efficiently extract/solubilize pure SWNT with a desired chirality has yet not been demonstrated. Herein we report that certain chiral polyfluorene copolymers can well-recognize SWNTs with a certain chirality preferentially, leading to solubilization of specific chiral SWNTs. The chiral copolymers were prepared by the Ni(0)-catalyzed Yamamoto coupling reaction of 2,7-dibromo-9,9-di-n-decylfluorene and 2,7-dibromo-9,9-bis[(S)-(+)-2-methylbutyl]fluorene comonomers. The selectivity of the SWNT chirality was mainly determined by the relative fraction of the achiral and chiral side groups. By a molecular mechanics simulation, the cooperative interaction between the fluorene moiety, alkyl side chain, and graphene wall were responsible for the recognition/dissolution ability of SWNT chirality. This is a first example describing the rational design and synthesis of novel fluorene-based copolymers toward the recognition/extraction of targeted (n,?m) chirality of the SWNTs.  相似文献   

10.
Simulation of adsorption of DNA on carbon nanotubes   总被引:2,自引:0,他引:2  
We report molecular dynamics simulations of DNA adsorption on a single-walled carbon nanotube (SWNT) in an aqueous environment. We have modeled a DNA segment with 12 base pairs (Dickerson dodecamer) and a (8,8) SWNT in water, with counterions to maintain total charge neutrality. Simulations show that DNA binds to the external surface of an uncharged or positively charged SWNT on a time scale of a few hundred picoseconds. The hydrophobic end groups of DNA are attracted to the hydrophobic SWNT surface of uncharged SWNTs, while the hydrophilic backbone of DNA does not bind to the uncharged SWNT. The binding mode of DNA to charged SWNTs is qualitatively different from uncharged SWNTs. The phosphodiester groups of the DNA backbone are attracted to a positively charged SWNT surface while DNA does not adsorb on negatively charged SWNTs. There is no evidence for canonical double-stranded DNA wrapping around either charged or uncharged SWNTs on the very short time scales of the simulations. The adsorption process appears to have negligible effect on the internal stacking structure of the DNA molecule but significantly affects the A to B form conversion of A-DNA. The adsorption of A-DNA onto an uncharged SWNT inhibits the complete relaxation of A-DNA to B-DNA within the time scale of the simulations. In contrast, binding of the A-DNA onto a positively charged SWNT may promote slightly the A to B conversion.  相似文献   

11.
We compared conductive transparent carbon nanotube coatings on glass substrates made of differently produced single-wall (SWNT), double-wall, and multiwall carbon nanotubes. The airbrushing approach and the vacuum filtration method were utilized for the fabrication of carbon nanotube films. The optoelectronic performance of the carbon nanotube film was found to strongly depend on many effects including the ratio of metallic-to-semiconducting tubes, dispersion, length, diameter, chirality, wall number, structural defects, and the properties of substrates. The electronic transportability and optical properties of the SWNT network can be significantly altered by chemical doping with thionyl chloride. Hall effect measurements revealed that all of these thin carbon nanotube films are of p-type probably due to the acid reflux-based purification and atmospheric impurities. The competition between variable-range hoping and fluctuation-assisted tunneling in the functionized carbon nanotube system could lead to a crossover behavior in the temperature dependence of the network resistance.  相似文献   

12.
Single-walled carbon nanotube (SWNT) horizontal arrays with specific chirality can be enriched using solid carbide catalysts on substrates. However, scale-up production by continuous loading of the solid catalysts onto the substrates is challenging. Described here is the preparation of a floating carbide solid catalyst (FSC) for the controlled growth of SWNTs. The FSC, titanium carbide (TiC) nanoparticle, was directly obtained in the carrier gas phase by decomposition and carbonization of the titanocene dichloride precursor at high temperature. By using the TiC nanoparticle FSC, both SWNT horizontal arrays and randomly distributed networks can be obtained. The chirality of the as-grown SWNTs were thermodynamically controlled to have fourfold symmetry. Further optimization of growth condition resulted in an abundance of (16,8) tubes with about a 74 % content. This FSC chemical vapor deposition (FSCCVD) method has potential for realizing mass growth of SWNTs with controlled structures.  相似文献   

13.
A nanocomposite carbon was prepared by grafting a carbonizable polymer, poly(furfuryl alcohol) (PFA), to a single-wall carbon nanotube (SWNT). The SWNT was first functionalized with arylsulfonic acid groups on the sidewall via a method using a diazonium reagent. Both Raman and FTIR spectroscopies were used to identify the functional groups on the nanotube surface. HRTEM imaging shows that the SWNT bundles are exfoliated after functionalization. Once this state of the SWNTs was accomplished, the PFA-functionalized SWNT (PFA-SWNT) was prepared by in situ polymerization of furfuryl alcohol (FA). The sulfonic acid groups on the surface of the SWNT acted as a catalyst for FA polymerization, and the resulting PFA then grafted to the SWNTs. The surfaces of the SWNTs converted from hydrophilic to hydrophobic when they were wrapped with PFA. The formation of the polymer and the attraction between it and the sulfonic acid groups were confirmed by IR spectra. A nanocomposite carbon was generated by heating the PFA-SWNT in argon at 600 degrees C, a process during which the PFA was transformed to nanoporous carbon (NPC) and the sulfonic acid groups were cleaved from the SWNT. Based upon the Raman spectra and HRTEM images of the composite, it is concluded that SWNTs survive this process and a continuous phase is formed between the NPC and the SWNT.  相似文献   

14.
Single-walled carbon nanotubes (SWNTs) demonstrate remarkable electronic and mechanical properties useful in developing areas such as nanoelectromechanical systems and flexible electronics. However, the highly inhomogeneous electronic distribution arising from different diameters and chirality in any given as-synthesized SWNT samples imposes severe limitations. Recently demonstrated selective chemical functionalization methods may provide a simple scalable means of eliminating metallic tubes from SWNT transistors and electronic devices. Here, we report on combined electron transport and Raman studies on the reaction of 4-bromobenzene diazonium tetrafluoroborate directly with single and networks of SWNT transistors. First, Raman studies are carried out on isolated individual SWNTs grown on SiO2/Si substrates by chemical vapor deposition with and without metal contacts. Metallic tubes are found to have, on average, higher reactivity toward diazonium reagents. However, a considerable degradation of electrical properties of semiconducting tubes occurs if the reaction is carried out to the point where the conductivity of metallic tubes is significantly suppressed. Insights from single-tube studies are then applied to elucidate the electrical and the Raman responses of SWNT random network transistors of different channel lengths to chemical functionalization.  相似文献   

15.
With the desire to mass produce any specific n,m type of single wall carbon nanotube (SWNT) from a small sample of the same material, we disclose here the preliminary work directed toward that goal. The ultimate protocol would involve taking a single n,m-type nanotube sample, cutting the nanotubes in that sample into many short nanotubes, using each of those short nanotubes as a template for growing much longer nanotubes of the same type, and then repeating the process. The result would be an amplification of the original tube type: a parent SWNT serving as the prolific progenitor of future identical SWNT types. As a proof-of-concept, we use here a short SWNT seed as a template for vapor liquid solid (VLS) amplification growth of an individual long SWNT. The original short SWNT seed was a polymer-wrapped SWNT, end-carboxylated, and further tethered with Fe salts at its ends. The Fe salts were to act as the growth catalysts upon subsequent reductive activation. Deposition of the short SWNT-Fe tipped species upon an oxide surface was followed by heating in air to consume the polymer wrappers, then reducing the Fe salts to Fe(0) under a H2-rich atmosphere. During this heating, the Fe(0) can etch back into the short SWNT so that the short SWNT acts as a template for new growth to a long SWNT that occurs upon introduction of C2H4 as a carbon source. Analysis indicated that the templated VLS-grown long SWNT had the same diameter and surface orientation as the original short SWNT seed, although amplifying the original n,m type remains to be proven. This study could pave the way for an amplified growth process of SWNTs en route to any n,m tube type synthesis from a starting sample of pure nanotubes.  相似文献   

16.
Single‐walled carbon nanotube (SWNT) horizontal arrays with specific chirality can be enriched using solid carbide catalysts on substrates. However, scale‐up production by continuous loading of the solid catalysts onto the substrates is challenging. Described here is the preparation of a floating carbide solid catalyst (FSC) for the controlled growth of SWNTs. The FSC, titanium carbide (TiC) nanoparticle, was directly obtained in the carrier gas phase by decomposition and carbonization of the titanocene dichloride precursor at high temperature. By using the TiC nanoparticle FSC, both SWNT horizontal arrays and randomly distributed networks can be obtained. The chirality of the as‐grown SWNTs were thermodynamically controlled to have fourfold symmetry. Further optimization of growth condition resulted in an abundance of (16,8) tubes with about a 74 % content. This FSC chemical vapor deposition (FSCCVD) method has potential for realizing mass growth of SWNTs with controlled structures.  相似文献   

17.
The direct bioelectrocatalysis was demonstrated for pyrroloquinoline quinone‐dependent glucose dehydrogenase (PQQ‐dependent GDH) covalently attached to single‐walled carbon nanotubes (SWNTs). The homogeneous ink‐like SWNT suspension was used for both creating the SWNT network on the microelectrode carbon surface and for enzyme immobilization. Functionalization of the SWNT surface by forming active ester groups was found to considerably enhance SWNT solubility in water with a range from 0.1 to 1.0 mg/mL. The PQQ‐dependent GDH immobilized on the surface of the SWNTs exhibited fast heterogeneous electron transfer with a rate constant of 3.6 s?1. Moreover, the immobilized PQQ‐dependent GDH retained its enzymatic activity for glucose oxidation. A fusion of PQQ‐dependent GDH with SWNTs has a great potential for the development of low‐cost and reagentless glucose sensors and biofuel cells.  相似文献   

18.
Gas feed composition and reaction temperature were varied to identify the thermodynamic threshold conditions for the nucleation and growth of SWNT from methane on supported Fe/Mo catalyst. These reaction conditions closely approximate the pseudoequilibrium conditions that lead to the nucleation and growth of SWNT. These measurements also serve to determine an upper limit of the Gibbs free energy of formation for SWNT. The Gibbs free energy of formation relative to graphite is in good agreement with literature values predicted from simulations for SWNT nuclei containing approximately 80 atoms, while considerably larger than that predicted for bulk (5,5) SWNT. Our estimate over the range 700 to 1000 degrees C of 16.1 to 13.9 kJ mol(-1) falls between the results of these simulations and literature values for diamond.  相似文献   

19.
Carbon nanotubes (CNTs) are nowadays routinely grown in a thermal CVD setup. State-of-the-art plasma-enhanced CVD (PECVD) growth, however, offers advantages over thermal CVD. A lower growth temperature and the growth of aligned freestanding single-walled CNTs (SWNTs) makes the technique very attractive. The atomic scale growth mechanisms of PECVD CNT growth, however, remain currently entirely unexplored. In this contribution, we employed molecular dynamics simulations to focus on the effect of applying an electric field on the SWNT growth process, as one of the effects coming into play in PECVD. Using sufficiently strong fields results in (a) alignment of the growing SWNTs, (b) a better ordering of the carbon network, and (c) a higher growth rate relative to thermal growth rate. We suggest that these effects are due to the small charge transfer occurring in the Ni/C system. These simulations constitute the first study of PECVD growth of SWNTs on the atomic level.  相似文献   

20.
应用吸附法将细胞色素c(Cytoc)固定在单壁碳纳米管(SWNT)表面.红外光谱(IR)显示被固定的Cytoc能保持原有的空间结构,没有发生变性.循环伏安测试表明,Cytoc在SWNT表面能发生稳定的直接电子转移,其i~E曲线上出现一对良好的、几乎对称的氧化还原峰.式量电位E0’基本不随扫速的增加而变化(在20 mV~120 mV/s的扫速范围内,E0’平均值为0.165±0.001V).实验同时给出,吸附在SWNT表面的Cytoc仍能保持其对H2O2电化学还原的生物电催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号