首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
Group 13-15 inorganic analogues of benzene, [HMYH](3) (M = B, Al, Ga; Y = N, P, As), mixed heterocycles of the type [BAlGaNPAs]H(6) and their dimers have been theoretically examined at the B3LYP/TZVP level of theory. Six different isomers have been structurally characterized for the mixed compounds [BAlGaNPAs]H(6). B-N bonding strongly (about approximately 90-100 kJ mol(-)(1)) stabilizes the mixed heterocycles, followed by the preference of the Al-N bonded structures over Ga-N bonded ( approximately 30-40 kJ mol(-1)), while B-P bonding is slightly (5-10 kJ mol(-1)) more favorable compared to B-As. Thus, the bonding pattern is predicted to be the most stable, followed by the core. Processes of [HMYH](3) formation from donor-acceptor complexes H(3)MYH(3) are predicted to be thermodynamically favorable for all MY combinations. Dimerization reactions of the coordinationally unsaturated [HMYH](3) heterocycles yielding hexamer clusters [HMYH](6) are found to be exothermic, with the exception of borazine, for which, as for benzene, dimerization is strongly endothermic due to the aromaticity of C(6)H(6) and [HBNH](3). Despite the high endothermicity of [HBNH](3) dimerization, the B-N bond formation is the driving force of the dimerization of mixed species [BAlGaNPAs]H(6). The dimerization enthalpies of [BAlGaNPAs]H(6) may be both exo- and endothermic, depending on the bonding pattern of the isomers. A complete set of mean MY bond energies in four- and six-membered cycles of [HMYH](6) was derived. The MY energies were found to be transferable quantities and may serve for a qualitative prediction of the relative stability of different isomers of mixed cluster compounds. [BAlGaNPAs](2)H(12) clusters are promising synthetic targets, they are expected to serve as single-source precursors for the stoichiometry-controlled CVD processes of the group 13-15 composites. A strategy of their synthesis and the most suitable starting systems have been also predicted.  相似文献   

2.
Potential of the inorganic rings and clusters as single-source precursors to 13–15 binary materials and composites is examined employing quantum-chemical methods. Importance of the gas phase association reactions during MOCVD processes from organometallic and hydride precursors is emphasized. Generation of the gas phase [HMYH]n clusters (M = Al,Ga,In; Y = N,P,As) with large oligomerization degree (n ≥ 30) is thermodynamically favorable even at high temperature conditions (1000 K) for all M,Y pairs. High stability of the N-containing clusters makes mixed metal oligomer imidometallanes excellent single-source precursors for the stoichiometry-controlled MOCVD of 13–15 composites.  相似文献   

3.
Formation of the donor-acceptor complexes of group 13 metal derivatives with nitriles and isonitriles X(3)M-D (M = Al,Ga,In; X = H,Cl,CH(3); D = RCN, RNC; R = H,CH(3)) and their subsequent reactions have been theoretically studied at the B3LYP/pVDZ level of theory. Although complexation with MX(3) stabilizes the isocyanide due to the stronger M-C donor-acceptor bond, this stabilization (20 kJ mol(-1) at most) is not sufficient to make the isocyanide form more favorable. Relationships between the dissociation enthalpy DeltaH degrees (298)(diss), charge-transfer q(CT), donor-acceptor bond energy E(DA), and the shift of the vibrational stretching mode of the CN group upon coordination Deltaomega(CN) have been examined. For a given metal center, there is a good correlation between the energy of the donor-acceptor bond and the degree of a charge transfer. Prediction of the DeltaH degrees (298)(diss) on the basis of the shift of CN stretching mode is possible within limited series of cyanide complexes (for the fixed M,R); in contrast, complexes of the isocyanides exhibit very poor Deltaomega(CN) - DeltaH degrees (298)(diss) correlation. Subsequent X ligand transfer and RX elimination reactions yielding monomeric (including donor-acceptor stabilized) and variety of oligomeric cage and ring compounds with [MN]n, [MC]n, [MNC]n cores have been considered and corresponding to thermodynamic characteristics have been obtained for the first time. Monomeric aluminum isocyanides X(2)AlNC are more stable compared to Al-C bonded isomers; for gallium and indium situation is reversed, in qualitative agreement with Pearson's HSAB concept. Substitution of X by CN in MX(3) increases the dissociation enthalpy of the MX(2)CN-NH(3) complex compared to that for MX(3)-NH(3), irrespective of the substituent X. Mechanisms of the initial reaction of the X transfer have been studied for the case X = R = H. The process of hydrogen transfer from the metal to the carbon atom in H(3)M-CNH is thermodynamically favorable and is likely to be intramolecular. By contrast, intramolecular hydrogen transfer in H(3)M-NCH has been definitely ruled out. Head-to-tail dimeric species [H(3)M-(NC)H](2) are formed exothermically and exhibit low H.H distances, which can assist in hydrogen transfer, and are likely to be the starting point for H(2) elimination. Elimination of H(2), CH(4), and C(2)H(6) from X(3)M-(NC)R adducts is very favorable thermodynamically; by contrast, elimination of HCl and CH(3)Cl is highly unfavorable even if formation of oligomer species takes place. Thus, high-temperature generation of gas-phase rings and clusters has been predicted viable in the cases X = H,CH(3) and their presence in the reactor media should not be neglected. Moderate stability of [HMCH(2)NH](4) clusters (especially in the cases M = Ga, In) makes these species viable intermediates of gas-phase reactions. Their formation may be responsible for the carbon contamination in the course of metal organic chemical vapor deposition processes of group 13 binary nitrides.  相似文献   

4.
A series of group 13-15 compounds of the general formula [MYR(2)](n) (M = B, Al, Ga; Y = N, P, As; n = 1, 2; R = H, CH(3)) have been theoretically studied at the B3LYP/TZVP level of theory. The stability of different isomer structures is discussed to reveal the competitiveness of group 13-13, group 13-15, and group 15-15 bonding. Preferential bonding patterns and trends in the stability with respect to M and Y are also discussed. For the dimeric compounds, C(2v) symmetric [HMYH](2) rings are the lowest in energy, with the single exception of Ga(2)N(2)H(4), for which a somewhat unexpectedly C(2v) symmetric [GaNH(2)](2) ring is found to be the energy minimum, followed by the planar H(2)NGaGaNH(2) chain. The higher stability of the GaNH(2) bonding pattern in oligomer compounds may be rationalized in terms of the increasing stability of the oxidation state I as compared to that for the boron and aluminum analogues. Methylation significantly reduces the energetic differences between monomeric MYMe(2) MeMYMe, and Me(2)MY, isomers, especially for the AlP, AlAs, and GaAs systems, thus allowing a variety of structural types to be competitive in energy.  相似文献   

5.
It is widely thought that the oligomer compounds [RMYR]n (M-group 13, Y-group 15 element) should obey the isolated square rule found for the boron-nitrogen cages. In contrast to these expectations, the needle-shaped oligomers, which violate this rule, are more stable compared to the cage (fullerene-like) oligomers for all MY pairs (M = B, Al, Ga, In; Y = N, P, As). The stability of the needle-shaped clusters improves with increasing oligomerization degree. Thus, the isolated square rule, which is analogous to the isolated pentagon rule widely applied for fullerenes, should not serve as the basis for searches for the most stable structures of the inorganic oligomers. Generation of the needle-shaped oligomers from the group 13 and 15 hydrides is thermodynamically favorable. A synthesis of novel inorganic polymers, formed by fusion of trimeric M3Y3 rings, is expected to be viable.  相似文献   

6.
Structures and thermodynamic properties of the imidogallanes [HGaNH](n) with high oligomerization degrees n = 7-16 and related amido-imido compounds have been investigated theoretically at the B3LYP level of theory with all-electron pVDZ and effective core potential LANL2DZ(d,p) basis sets. Needle-shaped oligomers which violate the "isolated square rule" were found to be more stable than cage isomers. The needle-shape oligomer with n = 16 is predicted to be exceptionally stable at low temperatures. Octamer and hexamer clusters dominate the gas phase at higher temperatures. The highest oligomerization degree of the spontaneous cluster formation has been estimated. It is concluded that generation of the gas-phase [HGaNH](n) clusters with oligomerization degree n >or= 60 is viable. This makes these species possible intermediates involved in the gas-phase generation of GaN nanoparticles. A case study of methyl-substituted analogues suggests that formation of the gaseous [MeGaNH](n) oligomers is even more favorable compared to that of [HGaNH](n). We predict that spontaneous growth of GaN oligomers is favorable thermodynamically. Laser-assisted generation of GaN nanorods at low-temperature conditions appears to be feasible.  相似文献   

7.
Geometry and thermodynamic characteristics of complexes X2MYH2 (M = Al, Ga, In; X = F, Cl, Br, I; Y = N, P, As) and their components were found by the B3LYP density functional method with the LANL2DZ(d,p) basic set. The nitrogen complexes X2MNH2 have a planar structure, whereas the phosphorus and arsenic complexes are pyramidal. Upon HX elimination, the dissociation energy of the M-Y bonds considerably increases (by 150-270 kJ mol- 1), which makes the dissociation of X2MYH2 into components thermodynamically unfeasible even at temperatures about 1000°C. A linear correlation between the dissociation enthalpies of M-Y bonds in the X3MYH3 and X2MYH2 complexes was found for each central atom M, which makes it possible to estimate the dissociation enthalpies of coordination-unsaturated compounds of the Group IIIa elements from the dissociation enthalpies of their coordination-saturated analogs. The enthalpies of dimerization of X2MYH2 fall in the range from 40 (Y = P, As) to 260 kJ mol- 1 (Y = N), which makes the process X3MNH3 = [X2MNH2]2 + HX with the retention of the metal-nitrogen bond more favorable than the dissociation of the initial complex into the components. Thus, dimers [X2MNH2]2 can be intermediates in chemical deposition of nitrides from the gas phase of donor-acceptor complexes.  相似文献   

8.
Oxidative addition of Cp*SbX2 (X=Cl, Br, I; Cp*=C5Me5) to group 13 diyls LM (M=Al, Ga, In; L=HC[C(Me)N (Dip)]2, Dip=2,6-iPr2C6H3) yields elemental antimony (M=Al) or the corresponding stibanylgallanes [L(X)Ga]Sb(X)Cp* (X=Br 1 , I 2 ) and -indanes [L(X)In]Sb(X)Cp* (X=Cl 5 , Br 6 , I 7 ). 1 and 2 react with a second equivalent of LGa to eliminate decamethyl-1,1’-dihydrofulvalene (Cp*2) and form stibanyl radicals [L(X)Ga]2Sb . (X=Br 3 , I 4 ), whereas analogous reactions of 5 and 6 with LIn selectively yield stibanes [L(X)In]2SbH (X=Cl 8 , Br 9 ) by elimination of 1,2,3,4-tetramethylfulvene. The reactions are proposed to proceed via formation of [L(X)M]2SbCp* as reaction intermediate, which is supported by the isolation of [L(Cl)Ga]2SbCp ( 11 , Cp=C5H5). The reaction mechanism was further studied by computational calculations using two different models. The energy values for the Ga- and the In-substituted model systems showing methyl groups instead of the very bulky Dip units are very similar, and in both cases the same products are expected. Homolytic Sb−C bond cleavage yields van der Waals complexes from the as-formed radicals ([L(Cl)M]2Sb . and Cp* . ), which can be stabilized by hydrogen atom abstraction to give the corresponding hydrides, whereas the direct formation of Sb hydrides starting from [L(Cl)M]2SbCp* via concerted β-H elimination is unlikely. The consideration of the bulky Dip units reveals that the amount of the steric overload in the intermediate I determines the product formation (radical vs. hydride).  相似文献   

9.
The structures of a series of spherical host-guest complexes [{MeE(PPh)(3)Li(4)·3thf}(4)(μ(4)-X)](-) (E = Al, [1X](-); E = Ga, [2X](-); E = In, [3X](-)) reveal that changing the halide ions (X = Cl, Br, or I) within their central tetrahedral Li(4) sites has negligible effect on the structural parameters.  相似文献   

10.
采用密度泛函理论(DFT)方法研究了二缺位γ-Keggin型[γ-Xn+W10O36](12-n)-(X=AlⅢ,SiⅣ,PⅤ,SⅥ,GaⅢ,GeⅣ,AsⅤ,SeⅥ)阴离子的儿何结构和电子性质结果表明,在二缺位γ-Keggin型阴离子中,中心四面体氧原子Oa与中心杂原子及钨原子间的键长[d(X-Oa)及d(W-Oa)]...  相似文献   

11.
The amine hydrogen atoms of the cyclic trimeric silazane [Me(2)SiNH](3) are readily replaced by the H(2)Al. NMe(3) group in a simple aminolyis reaction of [Me(2)SiNH](3) with H(3)Al.NMe(3) to afford the aluminum amides (Me(2)SiNAlH(2).NMe(3))(n)(Me(2)SiNH)(3-n) (1, n = 3; 2, n = 1; 4, n = 2). The monosubstituted amide 2 could not be isolated, because it undergoes condensation to the tricyclic compound 1,1',2,2'-(HAlNMe(3))(2) (3). Contrary to these results the analogous reactions of the more flexible cyclic tetrameric silazane [Me(2)SiNH](4) with H(3)Al.NMe(3) did not give simple aluminum amides, but complicated mixtures were obtained from which the interesting polycyclic species Al(5)C(22)H(73)N(10)Si(8).C(6)H(6) (5) and Al(6)C(22)H(76)N(10)Si(8).1/4 C(6)H(14) (6) could be isolated in low yields. A key step in the formation of 5 and 6 is a low-temperature dehydrosilylation reaction which leads to cleavage of the silazane ring. Compounds 1, 3, and 4 were characterized spectroscopically ((1)H, (13)C, (27)Al NMR and FTIR) and by single crystal X-ray diffraction, whereas 5 and 6 were characterized by X-ray diffraction only. Thermolysis experiments involving 1 and 3 indicate that the onset of Al-N bond formation via dehydrosilylation is accompanied by loss of trimethylamine and formation of larger aggregates, which are stable to further silane elimination to at least 620 degrees C.  相似文献   

12.
Al/P- and Ga/P-based frustrated Lewis pairs (FLPs) reacted with an azirine under mild conditions under cleavage of the heterocycle on two different positions. Opening of the C−C bond yielded an unusual nitrile–ylide adduct in which a C−N moiety coordinated to the FLP backbone. Cleavage of a C−N bond afforded the thermodynamically favored enamine adduct with the N atom bound to P and Al or Ga atoms. Ring closure was observed upon treatment of an Al/P FLP with electronically unsaturated substrates (4-(1-cyclohexenyl)-1-aza-but-1-en-3-ynes) and yielded by C−N bond formation hexahydroquinoline derivatives, which coordinated to the FLP through P−C and Al−C bonds. Diphenylcyclopropenone showed a diverse reactivity, which depending on steric shielding and the polarizing effect of Al or Ga atoms afforded different products. An AltBu2/P FLP yielded an adduct with the C=O group coordinated to P and Al. The dineopentyl derivative gave an equilibrium mixture consisting of a similar product and a simple adduct with O bound to Al and a three-coordinate P atom. Both compounds co-crystallize. The Ga/P FLP only formed the simple adduct with the same substrate. Rearrangement resulted in all cases in C3-ring cleavage and migration of a mesityl group from P to a former ring C atom by C−C bond formation. Diphenylthiocyclopropenone (evidence for the presence of P=C bonds) and an imine derivative afforded similar products.  相似文献   

13.
The reactions of vinyl chloride (VC) with representative late metal, single-site olefin dimerization and polymerization catalysts have been investigated. VC coordinates more weakly than ethylene or propylene to the simple catalyst (Me(2)bipy)PdMe(+) (Me(2)bipy = 4,4'-Me(2)-2,2'-bipyridine). Insertion rates of (Me(2)bipy)Pd(Me)(olefin)(+) species vary in the order VC > ethylene > propylene. The VC complexes (Me(2)bipy)Pd(Me)(VC)(+) and (alpha-diimine)Pd(Me)(VC)(+) (alpha-diimine = (2,6-(i)Pr(2)[bond]C(6)H(3))N[double bond]CMeCMe[double bond]N(2,6-(i)Pr(2)[bond]C(6)H(3))) undergo net 1,2 VC insertion and beta-Cl elimination to yield Pd[bond]Cl species and propylene. Analogous chemistry occurs for (pyridine-bisimine)MCl(2)/MAO catalysts (M = Fe, Co; pyridine-bisimine = 2,6-[(2,6-(i)Pr(2)[bond]C(6)H(3))N[double bond]CMe](2)-pyridine) and for neutral (sal)Ni(Ph)PPh(3) and (P[bond]O)Ni(Ph)PPh(3) catalysts (sal = 2-[C(H)[double bond]N(2,6-(i)Pr(2)-C(6)H(3))]-6-Ph-phenoxide; P[bond]O = [Ph(2)PC(SO(3)Na)[double bond]C(p-tol)O]), although the initial metal alkyl VC adducts were not detected in these cases. These results show that the L(n)MCH(2)CHClR species formed by VC insertion into the active species of late metal olefin polymerization catalysts undergo rapid beta-Cl elimination which precludes VC polymerization. Termination of chain growth by beta-Cl elimination is the most significant obstacle to metal-catalyzed insertion polymerization of VC.  相似文献   

14.
在研究闭式多面体(HAlNH)12簇合物几何构型及稳定性的基础上, 用DFT的B3LYP方法在6-31G(d)的水平上, 对其内含式复合物X@(HAlNH)12 (X= Be, Mg, Ca, Zn, Al+, Ga+)进行了构型优化和能量计算, 并讨论了稳定结构的几何构型、自然键轨道(NBO)、振动频率、能量参数及NMR数据与结构的关系. 用Gaussian 03的QST3方法确定了客体X通过笼面6-元环的迁移过渡态(TS)结构, 并用IRC方法对所得TS结构进行了验证. 最后得到内含式复合物X@(HAlNH)12结构在热力学和动力学上的稳定性信息, 其中复合物Ga+@(HAlNH)12的结构相对最稳定.  相似文献   

15.
Ab initio molecular orbital theory at Hartree-Fock (HF), post-Hartree-Fock (MP2 and CCSD(T)), and the hybrid density functional theory (B3LYP) calculations were done on the mono-(CH)(5)XH and diskeletally substituted (CH)(4)(XH)(2) benzenes (X = B(-), N(+), Al(-), Si, P(+), Ga(-), Ge, and As(+)). The computed relative energies of the disubstituted isomers show interesting trends. While the ortho-isomer is the most stable for X = Ga(-), Ge, and As(+), meta was found to be the most stable for X = B(-), N(+), Al(-) and Si, and para was found to be the most stable for X = P(+). Various intricate factors that govern the relative stabilities, such as the sum of bond strengths in the twin Kekule forms, rule of topological charge stabilization (TCS), and electrostatic repulsion were critically examined. The sum of bond strengths in the twin Kekule forms was proved to be quite a successful measure in predicting the relative stability orders between ortho- and meta-/para-isomers. The rule of TCS breaks down especially in the presence of overwhelming factors such as the differences in the cumulative bond strengths of the two positional isomers; however, the stability ordering between the para- and meta-isomers is successfully predicted in most cases. The tendency for ring puckering increases a great deal especially when the substituents are from 3rd or 4th row. Extension of the popular inverse relationship between the thermodynamic stability and reactivity was found to be inapplicable for this class of compounds. The computed singlet-triplet energy differences and the chemical hardness (eta) values indicate that the skeletal substitution weakens the pi-strength of the benzenoid system and increases their reactivity.  相似文献   

16.
Alkyl- and phenylamido diphenylgallium compounds, [Ph(2)GaN(H)R](2) (R = Me, 1; Et, 2; (n)Pr, 3; (i)Bu, 4; Ph, 5), were prepared from the reactions of Ph(3)Ga with the corresponding primary amines and aniline at elevated temperatures and were characterized by elemental analysis, mass spectroscopy, and (1)H NMR and IR spectroscopy. These dimeric compounds contained bridging amido groups and exhibited both trans and cis isomers in solution. Thermolysis of compounds 1 and 5 was carried out either without solvent or in dodecane solutions, and two clusters, (PhGaNMe)(7) 6 and (PhGaNPh)(4) 7, were isolated in 24% and 55% yields and characterized. The structure of 6 consisted of a heptameric Ga(7)N(7) core constructed with Ga(2)N(2) and Ga(3)N(3) rings, and the structure of 7 possessed a Ga(4)N(4) cubane core.  相似文献   

17.
用自洽场理论(HF)和密度泛函理论(DET)的B3LYP方法,在6-31G~μ水平上研究了HAINH的低聚物(HAINH)_n(n=1~6)簇的几何构型、电子结构、红外光谱和化学热力学性质,并比较了(HAINH)_n和(CIAINH)_n两种低聚物对应结构中化学键强弱,分析了引起(AIN)_n骨架结构发生变化的原因.结果表明,(HAINH)_n簇的基态结构为C_8(n=1),D_(2h)(n=2),D_(3h)(n=3),T_d(n=4),C_s(n=5)和D_(3d)(n=6)对称点群.HAINH基态结构中,AI-N键是三重键.在D_(2h)(n=2)和D_(3h)(n=3)结构中,所有AI-N键均为二重键.在Td(n=4)和D_(3d)(n=6)中,AI-N键为正常单键,而在C_s(n=5)结构中含有三种AI-N键:单键、双键和混合键.振动频率计算表明,结构a~f均为基态稳定结构.热力学计算给出的稳定性顺序为:f>d>e>c>b>a.  相似文献   

18.
The reactivity of a series of Ga(I), Ga(II) and Ga(III) heterocyclic compounds towards a number of Group 15 substrates has been investigated with a view to prepare examples of gallium-terminal pnictinidene complexes. Although no examples of such complexes were isolated, a number of novel complexes have been prepared. The reactions of the gallium(I) N-heterocyclic carbene analogue, [K(tmeda)][:Ga{[N(Ar)C(H)](2)}] (Ar = 2,6-diisopropylphenyl) with cyclo-(PPh)(5) and PhN[double bond, length as m-dash]NPh led to the unusual anionic spirocyclic complexes, [{kappa(2)P,P'-(PhP)(4)}Ga{[N(Ar)C(H)](2)}](-) and [{kappa(2)N,C-PhNN(H)(C(6)H(4))}Ga{[N(Ar)C(H)](2)}](-), via formal reductions of the Group 15 substrate. The reaction of the digallane(4), [Ga{[N(Ar)C(H)](2)}](2), with (Me(3)Si)N(3) afforded the paramagnetic, dimeric imido-gallane complex, [{[N(Ar)C(H) ](2)}Ga{mu-N(SiMe(3))}](2), via a Ga-Ga bond insertion process. In addition, the new gallium(III) phosphide, [GaI{P(H)Mes*}{[N(Ar)C(H)](2) }], Mes* = C(6)H(2)Bu(t)(3)-2,4,6; was prepared and treated with diazabicycloundecane (DBU) to give [Ga(DBU){P(H)Mes*}{[N(Ar)C(H)](2)}], presumably via a gallium-terminal phosphinidene intermediate, [Ga{[double bond, length as m-dash]PMes*}{[N(Ar)C(H)](2) }]. The possible mechanisms of all reactions are discussed, all new complexes have been crystallographically characterised and all paramagnetic complexes have been studied by ENDOR and/or EPR spectroscopy.  相似文献   

19.
The reactivity of several transition metal half sandwich complexes towards an anionic gallium(I) heterocyclic complex, [K(tmeda)][Ga{[N(Ar)C(H)]2}](Ar = C6H3Pri2-2,6), has been investigated. This has led to the anionic half sandwich complexes, [K(tmeda)][(C5H4R)M(CO)n[Ga{[N(Ar)C(H)]2}]](M = V, R = H, n= 3; M = Mn, R = Me, n= 2; M = Co, R = H, n= 1), which crystallographic studies show to form dimers (M = Mn and Co) or a polymer (M = V) through bridging potassium cations. The metal-gallium bond lengths in all complexes are very short which, combined with some spectroscopic evidence, is suggestive of M-Ga pi-bonding. Density functional theory studies of models of all complexes indicate that the level of back-bonding in these complexes is, however, minimal and of a similar order to that seen in analogous complexes incorporating neutral N-heterocyclic carbene ligands. Reactions of the metallocenes, [M(C5H4Me)2](M = V or Cr), with the digallane4, [Ga{[N(Ar)C(H)]2}]2, have afforded the neutral complexes, [M(C5H4Me)2[Ga{[N(Ar)C(H)]2}]], which are thought to be formed via an initial oxidative insertion of the transition metal centre into the Ga-Ga bond of the digallane. X-Ray crystallography shows the complexes to be monomeric. One (M = V) reacts with one equivalent of [K(tmeda)][Ga{[N(Ar)C(H)]2}] to give the crystallographically characterised, anionic bis(gallyl)-complex, [K(tmeda)][V(C5H4Me)2[Ga{[N(Ar)C(H)]2}]2]. For comparison, the reaction of [K(tmeda)][Ga{[N(Ar)C(H)]2}] with [Mn{CH(SiMe3)2}2] was carried out and gave the monomeric, anionic complex, [K(tmeda)][Mn{CH(SiMe3)2}2[Ga{[N(Ar)C(H)]2}]].  相似文献   

20.
Beta-elimination is explored as a possible means of nitrogen-atom transfer into organic molecules. Molybdenum(IV) ketimide complexes of formula (Ar[t-Bu]N)3Mo(N=C(X)Ph), where Ar = 3,5-Me2C6H3 and X = SC6F5, SeC6F5, or O2CPh, are formally derived from addition of the carbene fragment [:C(X)Ph] to the terminal nitrido molybdenum(VI) complex (Ar[t-Bu]N)3Mo identical with N in which the nitrido nitrogen atom is installed by scission of molecular nitrogen. Herein the pivotal (Ar[t-Bu]N)3Mo(N=C(X)Ph) complexes are obtained through independent synthesis, and their propensity to undergo beta-X elimination, i.e., conversion to (Ar[t-Bu]N)3MoX + PhC identical with N, is investigated. Radical C-X bond formation reactions ensue when benzonitrile is complexed to the three-coordinate molybdenum(III) complex (Ar[t-Bu]N)3Mo and then treated with 0.5 equiv of X2, leading to facile assembly of the key (Ar[t-Bu]N)3Mo(N=C(X)Ph) molecules. Treated herein are synthetic, structural, thermochemical, and kinetic aspects of (i) the radical C-X bond formation and (ii) the ensuing beta-X elimination processes. Beta-X elimination is found to be especially facile for X = O2CPh, and the reaction represents an attractive component of an overall synthetic cycle for incorporation of dinitrogen-derived nitrogen atoms into organic nitrile (R-C identical with N) molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号