首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This paper presents an analytical method for the simultaneous determination of zoalene and its metabolite 3-amino-5-nitro-o-toluamide (3-ANOT) in chicken muscle and liver by solid phase extraction and UPLC?CMS-MS operated in the positive and negative ionization switching mode. Samples were extracted with phosphate buffer solution and purified with OASIS? HLB cartridge after pH adjustment. The determination was carried out using UPLC?CMS-MS on a Waters Acquity BEH C18 column with 0.1% formic acid in water/acetonitrile as mobile phase with gradient elution. The linearity of the analytical response across the studied range of concentrations (2.0?C1,000 ??g L?1) was excellent, obtaining correlation coefficients higher than 0.999. Matrix effects had been investigated for zoalene and 3-ANOT. Recovery studies were carried out on spiked chicken muscle and liver blank samples, at four concentration levels (50, 1,500, 3,000, and 4,500 ??g kg?1 for chicken muscle and 50, 3,000, 6,000, and 9,000 ??g kg?1 for chicken liver) performing six replicates at each level. Mean recoveries of 77.9?C94.2% with CVs of 3.2?C8.7% were obtained. The method demonstrated to be suitable for the simultaneous determination of zoalene and 3-ANOT in chicken tissues.  相似文献   

2.
This study established a new methanol precipitation?Cultrasonic emulsion breaking method for extraction of doxorubicin from polymeric micelles and developed a UPLC?CMS/MS method for the determination of doxorubicin in rat plasma. The emulsion breaking efficiency of methanol is up to 99.2%. The plasma samples were analyzed by UPLC/MS/MS using positive electrospray ionization mode in the multiple-reaction monitoring (MRM) mode. The calibration curves were linear over the range 5?C1,000 ng mL?1 with the lower limit of quantification of 5 ng mL?1. The intra- and inter-day precisions of QC samples were all <10.0%. The chromatographic separation was 2.5 min. The developed method was successfully applied to a pharmacokinetic study of doxorubicin in rats following intravenous administration.  相似文献   

3.
A novel sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS-MS) method simultaneously determined buprenorphine (BUP) and its active metabolite, norbuprenorphine (NBUP), and a coformulant, naloxone was developed, validated and applied successfully in humans. Buprenorphine-d 4 and norbuprenorphine-d 3 were used as the internal standard. The analysis was performed on a silica column, and the mobile phase was isocratic and composed of acetonitrile:2 mM ammonium formate in H2O (82:18, v/v). Mass spectrometry employed multiple reaction monitoring modes with transitions of m/z 468.1?C55.2 for BUP, 414.2?C101.2 for NBUP, 328.3?C310.3 for naloxone, 472.1?C59.2 for buprenorphine-d 4 and 417.2?C101.2 for norbuprenorphine-d 3. Lower limit of quantification (LLOQ) of the analytical method was 0.05 ng mL?1 for BUP, 0.1 ng mL?1 for NBUP and 0.025 ng mL?1 for naloxone, respectively. The standard calibration curves of BUP, NBUP and naloxone were linear over the concentration range of 0.05?C20 ng mL?1, 0.1?C20 ng mL?1 and 0.025?C20 ng mL?1, respectively. The precisions (RSD) and accuracies (RE) of LLOQ and other QC samples were in acceptable range, with RSD < 20% and RE ± 20% for LLOQ and RSD < 15% and RE within ±15% for QC samples. The method was accurate, precise and specific, and was applied to the pharmacokinetic study of buprenorphine in healthy volunteers.  相似文献   

4.
A rapid, highly sensitive, and selective method was developed for the determination of the insecticide chlorantraniliprole (CAP) in corn and soil using ultra-performance liquid chromatography?Ctandem mass spectrometry (UPLC?CMS/MS). Samples were extracted with acetonitrile, and aliquots were cleaned with solid-phase extraction cartridges. Two precursor-product ion transitions for CAP were measured and evaluated to provide maximum confidence in the results. Average recovery for soil, corn grain, and corn straw at different levels (5 or 10, 40, and 100 ??g kg?1) ranged from 74.9 to 97.5%, with intra-day relative standard deviation (RSD) values of 1.9?C11.3% and inter-day RSD values of 4.7?C10.4%. Coefficients of determination (R 2) of 0.9988 or higher were achieved for CAP in soil, corn grain, and corn straw matrix calibration curves, from 5 to 1,000 ??g L?1. The CAP limits of quantitation in soil, corn grain, and straw were determined to be 5, 10, and 10 ??g kg?1, respectively, which were much lower than the maximum residue levels established by the Environmental Protection Agency of United States. UPLC?CMS/MS was used to determine the CAP residues in real corn and soil for studies on their dissipation. The trial results showed that the half-lives of CAP changed from 12.6 to 23.1 days in soils and ranged from 4.9 to 5.4 days in corn straws in the districts of Henan and Shandong, and the average levels of CAP residues in corn grains were all <0.01 mg kg?1 with a harvest withholding period of 180 days.  相似文献   

5.
A simple, rapid, and selective method to determine the concentration of mildronate in human plasma and urine using ultra performance liquid chromatography?Ctandem mass spectrometry (UPLC-MS-MS) was developed and validated. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization at m/z 147.2?C58.0 for mildronate and m/z 147.2?C87.8 for the internal standard, carbachol. The UPLC separation was carried out with a UPLC BEH HILIC column. The mobile phase consisted of 0.08% formic acid in 30 mM ammonium acetate solution and acetonitrile (23:77, v/v). Plasma samples were extracted from plasma by protein precipitation and urine samples were diluted with the mobile phase. The analysis time was 3.5 min for each sample. Linear calibration curves ranged from 0.10 to 100.00 ??g mL?1 in human plasma and 0.50 to 600.00 ??g mL?1 in urine. The method had been successfully applied to a pharmacokinetic study in healthy volunteers. After single intravenously administration of 250, 500, and 750 mg mildronate, the elimination half-life (t 1/2) were (2.74 ± 0.67), (4.86 ± 0.82) and (5.16 ± 0.77) h, respectively. The t 1/2 for the 250 mg dose did vary significantly with other dosages (P < 0.05), mildronate may have non-linear pharmacokinetics in humans.  相似文献   

6.
A rapid, specific, and sensitive ultra-performance liquid chromatographic method for analysis of levofloxacin in human plasma has been developed and validated. Plasma samples were spiked with the internal standard (enoxacin) and extracted with 10:1 (v/v) ethyl acetate–isopropanol. UPLC was performed on a 100 × 2.1 mm i.d., 1.7 µm particle, C18 column with 88:12 (v/v) 0.4% triethylamine buffer (pH 3)–acetonitrile as mobile phase, pumped isocratically at a pressure of 11,000 psi (758 bar) and a flow-rate of 0.3 mL min?1. Ultraviolet detection was performed at 300 nm. The retention times of levofloxacin and enoxacin were 3.4 and 2.8 min, respectively, and the run-time was 5 min. Calibration showed that response was a linear function of concentration over the range 0.05–10 µg mL?1 (r 2 ≥ 0.99) and the method was validated over this range for both precision and accuracy. The relative standard deviation was <15% for both intra-day and inter-day assay (n = 5). Levofloxacin and enoxacin were stable in plasma; there was no evidence of degradation during three freeze–thaw cycles, post-preparative stability at 20 °C was ≥24 h, short-term stability at room temperature was ≥6 h, and long-term stability at ?70 °C was ≥30 days. The method was successfully used in a study of the bioequivalence of two levofloxacin tablet formulations in healthy volunteers.  相似文献   

7.
A simple, sensitive, selective, rapid, rugged, reproducible and specific liquid chromatography?Ctandem mass spectrometry (LC?CMS/MS) method was used for quantitative estimation of rizatriptan (RZ) in human plasma using rizatriptan-d 6 (RZD6) as internal standard (IS). Chromatographic separation was performed on Ascentis Express RP Amide C18, 50 × 4.6 mm, 2.7 ??m column with isocratic mobile phase composed of 10 mM ammonium formate:acetonitrile (20:80 v/v) at flow rate of 0.5 mL min?1. RZ and RZD6 were detected with proton adducts at m/z (amu) 270.2 ?? 201.2 and 276.1 ?? 207.1, respectively, in multiple reaction monitoring (MRM) positive mode. Liquid?Cliquid extraction was used and validated over a linear concentration range of 0.1?C100.0 ng mL?1 with correlation coefficient r 2 ?? 0.9981. The limit of quantification (LOQ) and limit of detection (LOD) were found to be 0.1 ng mL?1 and 12.5 fg, respectively. Intra- and inter-day precision were within 1.7?C3.1% and 2.8?C3.7%, and accuracy within 96.0?C101.7% and 99.7?C101.4% for RZ. Drug was found to be stable throughout three freeze?Cthaw cycles. The method was successfully employed for analysis of plasma samples following oral administration of RZ (10 mg) in 25 healthy Indian male human volunteers under fasting conditions.  相似文献   

8.
Hongzhe Tian 《Chromatographia》2011,73(5-6):457-462
A method for determination of chlormequat (CCC) residue in fruits by liquid chromatography?Ctandem mass spectrometry (LC?CMS?CMS) was developed. Residue of CCC was extracted from samples with methanol?Cwater (v/v, 1:1) containing 1.0% acetic acid, cleaned up by strong cationic exchange (SCX) cartridge, and then determined by LC?CMS?CMS. The method showed good linearity over the concentration range 0.002?C5.0 mg kg?1 with correlation coefficient above 0.997. The limit of detection (LOD) and limit of quantitation (LOQ) for CCC were 5 × 10?4 mg kg?1 (S/N = 3) and 0.002 mg kg?1 (S/N = 10), respectively. Recoveries for CCC at three spiked levels (0.025, 0.050, and 0.20 mg kg?1) were in the range 80?C102%. Estimation of measurement uncertainty was calculated for CCC at the level of 0.025 mg kg?1 in fruits. The results demonstrated that the uncertainty of recovery was the main contribution to the combined standard uncertainty. The relative combined standard uncertainties associated with the method ranged from 11 to 13%, depending on the sample matrices.  相似文献   

9.
In this study, directly suspended liquid-phase microextraction was investigated for the extraction and determination of five chlorophenoxy acid herbicides in water samples. The optimized parameters for extraction of chlorophenoxy acid herbicides were 1 M HCl concentration in sample solution, solution temperature 20 °C, 45-min extraction time, 1,000 rpm stirring rate, 25 ??L extracting solvent volume and without NaCl addition. Under the optimum conditions, the enrichment factor ranged from 192 to 390. Calibration curves yielded good linearity (R 2 > 0.999) and the linear range was 5.0?C500.0 ??g L?1, limit of detection was 0.3?C0.4 ??g L?1 and limit of quantification was 1?C2 ??g L?1 for analytes and the relative standard deviations were in the range of 3?C10% (n = 3). Finally, the proposed method was successfully applied to the quantification of five chlorophenoxy acid herbicides in water samples and recovery was in the range of 74?C110%.  相似文献   

10.
A fast and simple method for simultaneous detection and quantification of the medicinally important E- and Z-guggulsterone from raw oleogum-resin of Commiphora wightii by UPLC was developed. Both E- and Z-guggulsterone were extracted from naturally occurring resin samples using ethyl acetate and methanol. Chromatographic separation of the analytes and their respective standards were performed on an Acquity UPLC BEH C18 column followed by UV as well as a triple quadrupole detector in positive ionization mode. A linear gradient elution profile followed; mobile phase consisted of acetonitrile and 2 mM ammonium acetate in water. The method was validated over a range of 6.25 to 100 ng mL?1 for both the guggulsterones. The calibration curves were linear with correlation coefficients of 0.9998 for E-guggulsterone and 0.9999 for Z-guggulsterone. The LOD and LOQ were 1.65 and 5.02 ng mL?1 for E-guggulsterone and 2.57 and 7.79 ng mL?1 for Z-guggulsterone respectively. The average recovery of E-guggulsterone (104.63%) and Z-guggulsterone (104.33%) achieved from spiked samples were consistent and reproducible. The intra- and inter-day assay precision of the analytes over the entire concentration range was less than 2%. The developed method required only 6 min to complete a run including 1 min to equilibrate the system and hence suitable for high throughput applications. Efficiency, reliability and accuracy of the developed method were evaluated by analyzing resin sample from different C. wightii populations. The result of this study offers improvement in terms of speed and sensitivity as compared to previously reported methods.  相似文献   

11.
The purpose of the study is first to develop a sensitive and rapid ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS) method for the determination of a new synthesized tubulin ligand, N-(2,6-dimethoxypyridine-3-yl)-9-methylcarbazole-3-sulfonamide (IG-105), in rat plasma. The analyte and internal standard (carbamazepine) were extracted by liquid/liquid extraction with petroleum ether/diethyl ether (2:1, v/v). The chromatographic separation was performed on an Acquity UPLC BEH C18 column with a mobile phase gradient consisting of methanol and water. The mass spectrometric detection was performed by triple-quadrupole mass spectrometry with multiple reaction monitoring (MRM) via an ESI source operating in positive ionization mode. The mass transitions m/z 398??153 and m/z 237??194 were used to assay the analyte and IS, respectively. The method demonstrated good linearity over a concentration range of 0.67?C333.33 ng mL?1, and the lower limit of quantitation (LLOQ) of IG-105 was 0.67 ng mL?1. The intra- and inter-day precision (relative standard deviation) values were <6%, and the accuracy (relative error) was <5% at three quality control levels. The extraction recovery of IG-105 and IS was 84.45 and 88.5%, respectively. Finally, the validated method was successfully applied to a pharmacokinetic study of IG-105 in rat plasma.  相似文献   

12.
A simple, sensitive and rapid ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method was developed and validated for the quantification of mitragynine in rat plasma using amitriptyline hydrochloride as an internal standard. Sample preparation involved a one-step liquid?Cliquid extraction using methyl t-butyl ether. Mitragynine was separated on an Acquity UPLC? BEH HILIC column using isocratic elution with a mobile phase of 10 mM ammonium formate buffer containing 0.1% formic acid:acetonitrile (15:85, v/v). At a flow rate of 0.2 mL min?1, the retention time of mitragynine was found to be 1.3 min. Ionization was performed in the positive ion electrospray mode. The selected mass-to-charge (m/z) ratio transition of mitragynine ion [M + H]+ used in the selected ion recording (SIR) was 399.1. The calibration curve was found to be linear over a concentration range of 1?C5,000 ng mL?1 (r = 0.999) with a lower limit of quantification (LLOQ) of 1 ng mL?1. Intra- and inter-day assay variations were found to be less than 15%. The extraction recoveries ranged from 85?C93% at the three concentrations (2, 400 and 4,000 ng mL?1) in rat plasma. This method was successfully used to quantify mitragynine in rat plasma following intravenous administration of the compound.  相似文献   

13.
Ultra-performance liquid chromatography (UPLC) in reversed-phase (RP), ion pair (IP) and hydrophilic interaction chromatography (HILIC) has been investigated for the separation of imidazolium-based ionic liquid (IL) cations. Among the three stationary phases (i.e., C18, C8 and phenyl) studied under RP conditions the phenyl phase provided much stronger retention for the IL cations. Four acids (hydrochloric, methanesulfonic, perchloric and trifluoroacetic) as mobile phase additives were compared in light of their effects on the retention of IL cations. It was shown that the retention of all IL cations decreased upon acidification of the mobile phase, possibly due to suppression of residual silanol ionization. Very fast (~3 min) and efficient RP-UPLC separation of six cations was achieved by gradient elution with acetonitrile?Cwater mobile phase containing 2.5 mmol L?1 perchloric acid. In IP-UPLC all solutes were well resolved in about 4 min by gradient elution with acetonitrile?Cwater mobile phase containing 1 mmol L?1 sodium 1-octanesulfonate as ion pairing reagent. Finally, under HILIC conditions by using isocratic elution with acetonitrile?Cwater (85:15, v/v) mobile phase containing 5 mmol L?1 ammonium formate (pH 3.2) the separation time was reduced to less than 2 min while maintaining excellent peak shapes and sufficient resolution. Compared to current LC systems UPLC allowed considerably faster separations with better peak shapes.  相似文献   

14.
A stability-indicating UPLC method was developed for quantitative determination of 9-desmethyl-α-dihydrotetrabenazine (9-DM-α-DTBZ), the precursor for preparing a widely used vesicular monoamine transporter 2 imaging agent 11C-α-DTBZ. Compound 9-DM-α-DTBZ was subjected to various stress conditions consisting of acidic, alkaline, oxidative, thermal and photolytic forced degradation. The decomposition of 9-DM-α-DTBZ was observed under oxidative condition, whereas no obvious degradation was shown under the other stress conditions. For chromatographic separation of 9-DM-α-DTBZ and its degradation products, an Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) and a mobile phase of 20:80 (v/v) methanol/ammonium acetate buffer (pH 4.5, 10 mM) were used. Quantitative determination of 9-DM-α-DTBZ was performed using a PDA detector at a flow rate of 0.30 mL min?1. UPLC–MS analysis was further utilized to characterize the two degradation products. The proposed method was fully validated as per USP guidelines with respect to linearity, accuracy, precision, robustness, limit of detection (LOD) and limit of quantification (LOQ). The linear regression analysis showed a good linear relationship (r 2  = 0.9995) in the concentration range of 0.001–1.00 mg mL?1 (n = 6). The assay method was found to have good precision (1.14–1.35% RSD) and recovery (98.91–101.23%). Additionally, the LOD and LOQ of 9-DM-α-DTBZ were 0.30 and 1.00 μg mL?1, respectively. These results indicated that the present method could be used to evaluate the quality of regular production samples and also used in stability assays.  相似文献   

15.
A sensitive and selective liquid chromatography?Ctandem mass spectrometry method for the determination of pethidine and atropine in rabbit plasma was developed and validated. The analytes and internal standard (IS) are extracted from plasma by liquid?Cliquid extraction using ethyl acetate, and separated on a Zorbax SB-Aq column (2.1 × 150 mm, 3.5 ??m) using acetonitrile?C0.1% formic acid as mobile phase with gradient elution. Electrospray ionization source was applied and operated in positive ion mode, and multiple reaction monitoring mode was used for quantification using target fragment ions m/z 247.8 ?? 219.7 for pethidine, m/z 289.9 ?? 123.8 for atropine and m/z 295.0 ?? 266.8 for IS, respectively. The assay is linear over the range of 5?C1,000 ng mL?1 for pethidine and atropine, with a lower limit of quantification of 3 ng mL?1 for pethidine and 5 ng mL?1 for atropine. Intra-day and inter-day precision are less than 11% and the accuracy are in the range of 90.4?C106.3%. Furthermore, the newly developed method is successfully used for the determination of pethidine and atropine in rabbit plasma for pharmacokinetic study.  相似文献   

16.
A simple, rapid and sensitive hollow-fiber with drop-to-drop solvent microextraction (HF-DDSME) combined with gas chromatography?Cmass spectrometry (GC?CMS) has been successfully developed for extraction and determination of antidepressants drugs (AD) in blood sample. The parameters that affect the separation and preconcentration of AD from sample solution were investigated. Calibration curve obtained for three AD were in the range of 100?C1,000; 150?C1,200; and 80?C1,200 ng mL?1 for amitriptyline, imipramine, and promethazine, respectively, with correlation coefficient (R 2 ) between 0.990 and 0.997. The limit of detection (LOD) obtained for amitriptyline, imipramine and promethazine was 25, 30 and 18 ng mL?1, respectively. The developed method has been successfully applied for the determination of AD concentration in blood sample, and the recoveries for the spiked samples were in the range of 92.3?C97.6%. The sample preparation procedure is very simple, effective and virtually solvent-free, and indicated to be a good alternative for the traditional liquid?Cliquid extraction. Finally, the proposed method was successfully applied for the determination of drug concentration of AD in human blood sample.  相似文献   

17.
Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) is a preeminent analytical tool for rapid biomedical analysis with the objective of reducing analysis time and maintaining good efficiency. In this study a simple, rapid, sensitive and specific ultra-performance liquid chromatography–tandem mass spectrometry method was developed and validated for quantification of the angiotensin II receptor antagonist, irbesartan and hydrochlorthiazide in human plasma. After a simple protein precipitation using methanol and acetonitrile, irbesartan, hydrochlorthiazide and internal standard (IS) telmisartan were separated on Acquity UPLC BEH? C18 column (50 × 2.1 mm, i.d. 1.7 μm, Waters, USA) using a mobile phase consisting of acetonitrile:10 mM ammonium acetate:formic acid (85:15:0.1 % v/v/v) pumped at a flow rate of 0.3 mL/min and detected by tandem mass spectrometry with negative ion mode. The ion transitions recorded in multiple reaction monitoring mode were m/z 427.2 → 193.08 for irbesartan, m/z 295.93 → 268.90 for hydrochlorthiazide and m/z 513.2 → 287.14 for IS. The assay exhibited a linear dynamic range of 30–500 ng/mL for irbesartan and 1–500 ng/mL in human plasma with good correlation coefficient of (0.996) and (0.997) and with a limit of quantitation of 30  and 1 ng/mL for irbesartan and hydrochlorthiazide, respectively. The intra- and inter-assay precisions were satisfactory; the relative standard deviations did not exceed 10.13 % for irbesartan and 11.14 % for hydrochlorthiazide. The proposed UPLC–MS/MS method is simple, rapid and highly sensitive, and hence it could be reliable for pharmacokinetic and toxicokinetic study in both animals and humans.  相似文献   

18.
Dekun Hou  Yan Guan  Xiaowei Di 《Chromatographia》2011,73(11-12):1057-1064
In this study, dispersive liquid?Cliquid microextraction (DLLME) combined with ultra high pressure liquid chromatography (UHPLC)?Ctunable ultraviolet detection (TUV), was developed for pre-concentration and determination of trace levels of tetracyclines, including 4-epitetracycline, 4-epichlortetracycline, doxycycline, chlortetracycline oxytetracycline, tetracycline, 4-epianhydrotetracycline and anhydrotetracycline, in aqueous samples. La (III) was used as the chelating agent to form a hydrophobic complex compound with tetracyclines, followed by extraction with ionic liquids. Some important parameters that may affect extraction efficiencies were examined and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.1?C200 ??g L?1, with correlation coefficients (r 2) >0.992. The limits of detection and quantification were 0.031?C0.079 and 0.10?C0.26 ??g L?1, respectively. The spiked recoveries of eight target compounds in river water, fishpond water and hog leachate were achieved in the range of 62.6?C96.3, 58.9?C94.5, 55.1?C86.1%, respectively.  相似文献   

19.
Ionic liquid-based ultrasonic/microwave-assisted extraction (IL-UMAE) of five anthraquinones (physcion, chrysophanol, emodin, rhein, and aloe-emodin) from rhubarb was first studied. Several parameters of UMAE were optimized, and the results were compared with of the heat-reflux extraction (HRE), ultrasound, and microwave-assisted extraction (MAE and UAE). The optimal UMAE conditions were as follows: the solvent was 2.0 mol L?1 1-butyl-3-methylimidazolium bromide [bmim]Br solution, the ration of solid/liquid (g mL?1) was 1:15, time was 2 min, and microwave power was 500 W. Under these UMAE conditions, total content of five anthraquinones was 28.00 mg g?1. Compared with the conventional HRE, regular MAE and UAE techniques, the proposed approach exhibited higher efficiency (18.90?C24.40% enhanced) and shorter extraction time (from 6 h to 2 min). The anthraquinones were then determined by ultra performance liquid chromatography (UPLC). Based on optimized conditions, contents of physcion, chrysophanol, emodin, rhein and aloe-emodin in rhubarb collected from different cultivated areas were 0.68?C2.99, 5.03?C15.40, 0.48?C4.34, 0.025?C3.93 and 0.26?C2.56 mg g?1, respectively. This study suggests that IL-UMAE was an efficient, rapid, simple and green preparation technique.  相似文献   

20.
A fast, sensitive, and specific LC?CMS?CMS method for determination of quinine (QN) and doxycycline (DOX) in rat plasma has been developed and validated. QN, DOX, and cimetidine (internal standard, IS) were extracted from the plasma by protein precipitation. The compounds were separated on a C18 column with methanol?C0.1% aqueous formic acid 70:30 (v/v) as mobile phase at a flow rate of 0.5 mL min?1 (split 1:3). Detection was by positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode, monitoring the transitions 325.0 ?? 307.0, 445.0 ?? 428.1, and 252.8 ?? 159.0, for QN, DOX, and IS, respectively. The analysis was carried out in 2.0 min and the method was linear in the plasma concentration range 5?C5,000 ng mL?1. The mean extraction recoveries for QN, DOX, and IS from plasma were 89.4, 90.5, and 86.3%, respectively. The method was validated for linearity, precision, accuracy, specificity, and stability; the results obtained were within the acceptable range. The proposed method was successfully applied to the determination of QN and DOX in rat plasma samples to support pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号