首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work focuses on the investigation of the thermal–mechanical properties of the epoxy composites with hybrid boron nitride nanotubes (BNNTs) and boron nitride nanosheets (BNNSs). The stable dispersions of BNNTs–BNNSs were achieved by a noncovalent functionalization with pyrene carboxylic acid. The resulting epoxy/BNNTs–BNNSs composites exhibited homogeneously dispersed BNNTs–BNNSs and a strong filler–matrix interface interaction. The composites showed a 95 % increase in thermal conductivity and a 57 % improvement in Young’s modulus by addition of only 1 vol. % BNNTs–BNNSs. Meanwhile, the composites also retained a high electrical resistance of pure epoxy. Our study thus shows the potential for hybrid BNNTs–BNNSs to be successfully used as the nanofillers of polymer composites for applications in electrically insulating thermal interface materials.  相似文献   

2.
Density functional theory computations were performed to investigate hydrogen adsorption in metaldecorated defective BN nanosheets. The binding energies of Ca and Sc on pristine BN nanosheets are much lower than the corresponding cohesive energies of the bulk metals; however, B vacancies in BN nanosheets enhance the binding of Ca and Sc atoms dramatically and avoid the clustering of the metal atoms on the surface of BN nanosheets. Ca and Sc strongly bind to defective BN nanosheets due to charge transfer between metal atoms and BN nanosheets. Sc-decorated BN nanosheets with B vacancies demonstrate promising hydrogen adsorption performances with a hydrogen adsorption energy of ?0.19~ ?0.35 eV/H2.  相似文献   

3.
Lanthanide-doped luminescent nanocrystals have great potential as biological luminescent labels, but their use has been limited because of most of these nanocrystals are hydrophobic. In this work, water soluble LaF3:Eu3+ down-conversion nanocrystals were prepared by encapsulated individual nanocrystals with polyvinylpyrrolidone (PVP). Their morphology, surface structure and luminescence properties were explored in detail. The results indicate that these nanocrystals can be readily dispersed in water, forming a stable and transparent colloidal solution. The colloidal solution displayed unique red luminescence with high emission intensity under ultraviolet excitation. These results suggest that these nanocrystals have great potential as luminescent labeling materials for biological applications.  相似文献   

4.
《中国物理 B》2021,30(7):74205-074205
The translucent GGAG:Ce/glass composites are prepared successfully by ball-milling, tableting, and pressureless sintering. The thickness of composites is about 400 μm. The x-ray diffraction(XRD), differential scanning calorimetry(DSC), density of composite materials are measured and discussed systematically. The scanning electron microscopy(SEM) and energy dispersive spectrometer(EDS) elemental mapping are employed to analyze the particle size, the shape of powders, and the distribution of GGAG:Ce particles in the glass matrix, respectively. The decay time, ultraviolet,(UV),x-ray excitation luminescence spectra, and temperature spectra are studied. The results show that the composite materials have high light output, good thermostability, and short decay time. The method adopted in this work is an effective method to reduce the preparation time and cost of the sample. The ultralow afterglow indicates that the composite materials have an opportunity to be used for x-ray detection and imaging.  相似文献   

5.
Sn is regarded as a promising anode material for Li‐ion batteries due to high capacity and cost effectiveness. Hitherto large‐scale fabrication of Sn‐based materials while achieving both high capacity and long cycle life remains challenging, but it is highly required for its realization in practical applications. Furthermore, low melting point always casts shadow over the morphology‐controllable preparation, and leads to multistep or high‐cost processes. Here, a facile and scalable method is devised for a 2D hybrid structure of Sn@graphene‐based nanosheets incorporating of optimized nitrogen species (≈13 wt%). Distinct from conventional Sn–C composites, the fairly N‐rich carbon nanosheets liberate limited potential of low N doping, induce massive extra Li‐storage sites, and encourage a high capacity significantly. In addition, these abundantly anchored heteroatoms also promote the homogeneous dispersion and robust confinement of ultrasmall Sn nanoparticles into the flexible graphene‐based nanosheets. This elastic encapsulation towards Sn nanoparticles admirably maintains structural integrity through effective remission of volume expansion, demonstrating a super long‐term cyclic stability for 1000 cycles. This structural and componential engineering offers a significant implication for rational design of materials in extended areas of energy conversion and storage.  相似文献   

6.
Recent advances in atomically thin two-dimensional (2-D) materials have led to a variety of promising future technologies for post-CMOS nanoelectronics and energy generation. This review is an attempt to thoroughly illustrate the current status and future prospects for 2-D materials other than graphene (e.g., BN nanosheets, MoS2, NbSe2, WS2, etc.), which have already been contemplated for both low-end and high-end technological applications. An overview of the different synthesis techniques for 2-D materials is presented here, with an exploration of the potential for developing methods of controllable large scale synthesis. Furthermore, we summarize the underlying theories which correlate the structural and physical properties of 2-D materials with their state-of-the-art applications. Finally, we show that utilizing the unprecedented properties arising from these materials would lead to innovative devices. Such devices would significantly reduce both device dimensions and power consumption, as necessary for the creation of tomorrow's sustainable technology.  相似文献   

7.
In this work, we used the hydrothermal method to synthesize Yb3+ and Tm3+ doped LaF3 nanostructures, which is an ultraviolet upconversion luminescent material. Two distinct shapes such as nanosheets, nanoparticles and bulk samples formed in the products by adjusting the concentrations of the surfactant of the reaction solution. Powder X-ray diffraction analysis showed that the products were pure hexagonal phase, while electron microscopy measurements confirm the formation of different morphologies. These nanostructures exhibit strong ultraviolet upconversion luminescence under the excitation of a 978-nm diode laser. In Yb3+ and Tm3+ codoped LaF3 materials, the relative intensity of ultraviolet and blue upconversion emissions became stronger as the size and morphology of sample changed from bulk to sheets.  相似文献   

8.
以六水合氯化镍、七水合硫酸钴、氧化石墨烯(GO)和赤磷为原料,利用原位水热法,在不添加任何表面活性剂的情况下,合成了磷化钴镍/还原氧化石墨烯(NiCoP/rGO)纳米复合材料,并通过XRD、SEM、TEM、IR、Raman等对该复合材料进行了表征.结果表明,所得复合材料由NiCoP纳米颗粒和还原氧化石墨烯片层结构组成,NiCoP纳米颗粒尺寸大约为20 nm,均匀分布在rGO片层结构表面上,同时探讨了复合材料的形成过程.另外,复合材料的吸附脱除实验表明,所得复合材料对多种染料都具有非常好的吸附作用,因此,在污水处理方面有较大的应用价值.  相似文献   

9.
Several luminescence properties of acetylated cellulose were studied as functions of the ester group concentration and of the wavelength of the exciting radiation. Of the three luminescence bands arising on irradiation at specific wavelengths, the ultraviolet band has a structure. A correlation was established between the intensity of this band and the ester group content, as well as a qualitative similarity between the luminescence excitation spectra and the absorption spectra. The relative quantum yield of the luminescence depends on the wavelength of the excited radiation. It is proposed that the centers which are specific for the ultraviolet luminescence are acetyl groups of two different types.  相似文献   

10.
Enhanced photoluminescence and postirradiation luminescence is reported from Ag+-doping ZnS/CdS/ZnS quantum dot–quantum wells (QDQWs) prepared via a reverse micelle process. Controlling the final mole ratio of water-to-surfactant in H2O/Heptane system, the size of a QDQW was estimated to be ~6 nm. Compared to undoped QDQWs, the doped QDQWs exhibited a much stronger orange emission, with a peak blue shift from 615 to 590 nm; the quantum yield was increased from 2.63 to 9.31%, and the remaining luminescence intensity after 2 h ultraviolet irradiation was increased from 71.2 to 94.7%. This improved quantum yield and postirradiation luminescence intensity for doped QDQWs was ascribed to the introduction of Ag+ ions to CdS wells.  相似文献   

11.
Presently, many studies are directed toward the design of new drug delivery systems. Inspired by a fascinating finding of a new carbon allotrope, namely graphyne (GY), we suggest the pristine and BN analogue of GY (BNY) nanosheets in the drug delivery applications. The purpose of the present study is to investigate the interaction of an anti-cancer drug (hydroxyurea (HU)) with GY and BNY nanosheets by means of the density functional theory (DFT). Results show that the GY nanosheet with B and N atoms could remarkably increase the tendency of nanosheet for adsorption of HU drug. Also, our ultraviolet-visible results show that the electronic spectra of the drug/nanosheet complexes exhibit a red shift toward higher wavelengths (lower energies). It was found that the HU/BNY had high chemical reactivity, which was important for binding of the drug onto the target site. In order to go further and gain insight into the binding features of considered systems with HU drug, the Atoms in Molecules (AIM) analysis was performed. Our results determine the strong interaction features of the HU/BNY bonding. Consequently, the present study demonstrated that the BNY could be used as potential carrier for delivery of HU drug.  相似文献   

12.
A novel unique C@SnS2 core-shell structure composites consisting of well-dispersity carbon microspheres and ultrathin tin disulfide nanosheets were successfully synthesized for the first time through a simple solvothermal method. The thin SnS2 nanosheets grew onto the carbon microspheres surfaces perpendicularly and formed the close-knit porous structure. When it was used as anode materials for lithium-ion batteries, the hybrid C@SnS2 core-shell structure composites showed a remarkable electrochemical property than pure SnS2 nanosheets. Typically, the hybrid composites with SnS2 nanosheet shells and carbon microsphere’s core exhibited an excellent initial discharge capacity of 1611.6 mAh/g. Moreover, the hybrid composites exhibited capacities of 474.8–691.6 mAh/g at 100 mA/g over 50 battery cycles, while the pure SnS2 could deliver capacities of 243–517.6 mAh/g in the tests. The results indicated that the improvement of lithium storage performance of the core-shell structure C@SnS2 anode materials in terms of rate capability and cycling reversibility owing to the introduction of the smooth carbon microspheres and special designing of core-shell structure.  相似文献   

13.
We fabricated composites of Fe2O3/reduced graphene oxide as lithium-ion batteries anode material with controlled structures by employing self-assembly of metal–organic frameworks (MOFs) and polymer-functionalized graphene oxide as precursors. By electrostatic interaction, the negatively charged MOFs, Prussian Blue (PB), are assembled on poly(diallyldimethylammonium chloride) (PDDA)-functionalized graphene oxide (positive charge). Then the PB cubes become FeOOH nanosheets when treated with sodium hydroxide. Upon further annealing, the FeOOH nanosheets transform to Fe2O3 nanoparticles while the graphene oxide become reduced graphene oxide simultaneously. It was found that the composites have good performance as anode of lithium-ion battery. This work shows a new way for self-assembling MOFs and 2D materials.  相似文献   

14.
Photoluminescent semiconductor nanocrystals, quantum dots (QDs), are nowadays one of the most promising materials for developing a new generation of fluorescent labels, new types of light-emitting devices and displays, flexible electronic components, and solar panels. In many areas the use of QDs is associated with an intense optical excitation, which, in the case of a prolonged exposure, often leads to changes in their optical characteristics. In the present work we examined how the method of preparation of quantum dot/polymethylmethacrylate (QD/PMMA) composite influenced the stability of the optical properties of QD inside the polymer matrix under irradiation by different laser harmonics in the UV (355 nm) and visible (532 nm) spectral regions. The composites were synthesized by spin-coating and radical polymerization methods. Experiments with the samples obtained by spin-coating showed that the properties of the QD/PMMA films remain almost constant at values of the radiation dose below ~10 fJ per particle. Irradiating the composites prepared by the radical polymerization method, we observed a monotonic increase in the luminescence quantum yield (QY) accompanied by an increase in the luminescence decay time regardless of the wavelength of the incident radiation. We assume that the observed difference in the optical properties of the samples under exposure to laser radiation is associated with the processes occurring during radical polymerization, in particular, with charge transfer from the radical particles inside QDs. The results of this study are important for understanding photophysical properties of composites on the basis of QDs, as well as for selection of the type of polymer and the composite synthesis method with quantum dots that would allow one to avoid the degradation of their luminescence.  相似文献   

15.
Carbon fibers-reinforced polyimide composites (CF-PI) were fabricated by means of a hot press molding technique. To contrast the effects of ultraviolet and atomic oxygen irradiation under high vacuum on the tribological properties of CF-PI composites, the friction and wear properties of the composites sliding against GCr15 steel ball before and after irradiation were conducted in high vacuum on a ball-on-disk test rig. The experimental results revealed that CF-PI composites exhibited higher modulus and lower coefficient of friction and worn rate value than pure polyimide under high vacuum. However, the coefficient of friction of composites increased and the worn rate value decreased after ultraviolet or atomic oxygen irradiation, which slightly affected the tribological properties of CF-PI composites. The chemical composition of the composites changed after irradiation was inspected by X-ray photoelectron spectroscopy. Microstructure of the worn surfaces of the tested composites was investigated by scanning electron microscopy to reveal the wear mechanism.  相似文献   

16.
Carbon nanosheets were synthesized by microwave plasma-enhanced chemical vapor deposition method on carbon nanotubes substrate which was treated by hydrogen plasma. The results showed that the diameters of carbon nanotubes first got thick and then “petal-like” carbon nanosheets were grown on the outer wall of carbon nanotubes. The diameters of carbon nanotubes without and with carbon nanosheets were 100-150 and 300-500 nm, respectively. Raman spectrum indicated the graphite structure of carbon nanotubes/carbon nanosheets. The hydrogen plasma treatment and reaction time greatly affected the growth and density of carbon nanosheets. Based on above results, carbon nanosheets/carbon nanotubes probably have important applications as cold cathode materials and electrode materials.  相似文献   

17.
New materials based on low-generation polyphenylene dendrimers with the light emission in the blue spectrum range were synthesized and examined for an efficient organic light emitting diodes (OLED) application. It has been shown that the ratio of p-phenylene groups with high fluorescence parameters to 1,3,5-triphenylbenzene groups with low fluorescent parameters may be the possible reason for the experimental variations of relative quantum yield of photoluminescence in the compounds explored. The quantum yield value is increased with a number of dendrimer generations up to 50–70%. The role of bromine atoms as the luminescence quenchers have been demonstrated, which is important for synthesis route choice.  相似文献   

18.
研究了熔制温度对铋离子掺杂钡铝硅酸盐玻璃发光性能的影响.当用紫外光和808nm的激光二极管激发时,分别在425nm和1330nm附近观察到可见和宽带红外发光.可见荧光的发射强度随着熔制温度的升高逐渐下降,而红外发光强度随着熔制温度的升高先是增强然后减弱.对光致发光的机理进行了探讨.  相似文献   

19.
Light-transforming polymeric materials based on two luminophor dopants (europium(III) nitrate with 1,10-phenanthroline and quinaldic acid characterized by intense luminescence in the spectral range of 400–650 nm) have been fabricated. It has been established that the photoresistance of polymeric materials based on the fabricated composites is higher than that of the polymeric material activated with europium(III) nitrate with 1,10-phenanthroline. It has been also established that luminescence and photochemical characteristics of polymeric composites are determined by the dopant molar ratio: the maximum luminescence intensity and photoresistance characterize the polymeric material containing europium(III) nitrate with 1,10-phenathroline and quinaldic acid at a molar ratio of 1: 2.  相似文献   

20.
Y. H. Ding  W. Xie  P. Zhang 《Ionics》2016,22(7):1021-1026
LiFePO4/graphene composites have been prepared by using tailoring graphene oxide (GO) nanosheets as precursors. The structure and electrochemical properties of the composites were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman microscopy, and a variety of electrochemical testing techniques. The decrease in graphene size reduces the contact resistance between activated materials, and enhances the lithium-ion transport in LiFePO4/graphene composites. With low weight fractions of small-size graphene sheets, the composites show better electrochemical performance than those with large size graphene sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号