首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The bilayer phase transitions of dialkyldimethylammonium bromides (2C(n)Br; n = 12, 14, 16) were observed by differential scanning calorimetry and high-pressure light-transmittance measurements. Under atmospheric pressure, the 2C(12)Br bilayer membrane underwent the stable transition from the lamellar crystal (L(c)) phase to the liquid crystalline (L(α)) phase. The 2C(14)Br bilayer underwent the main transition from the metastable lamellar gel (L(β)) phase to the metastable L(α) phase in addition to the stable L(c)/L(α) transition. For the 2C(16)Br bilayer, moreover, three kinds of phase transitions were observed: the metastable main transition, the metastable transition from the metastable lamellar crystal (L(c(2))) phase to the metastable L(α) phase, and the stable lamellar crystal (L(c(1)))/L(α) transition. The temperatures of all the phase transitions elevated almost linearly with increasing pressure. The temperature (T)-pressure (p) phase diagrams of the 2C(12)Br and 2C(14)Br bilayers were simple, but that of the 2C(16)Br bilayer was complex; that is, the T-p curves for the metastable main transition and the L(c(2))/L(α) transition intersect at ca. 25 MPa, which means the inversion of the relative phase stability between the metastable phases of L(β) and L(c(2)) above and below the pressure. Moreover, the T-p curve of the L(c(2))/L(α) transition was separated into two curves under high pressure, and as a result, the pressure-induced L(c(2P)) phase appeared in between. Thermodynamic quantities for phase transitions of the 2C(n)Br bilayers increased with an increase in alkyl-chain length. The chain-length dependence of the phase-transition temperature for all kinds of transitions observed suggests that the stable L(c(1))/L(α) transition incorporates the metastable L(c(2))/L(α) transition in the bilayers of 2C(n)Br with shorter alkyl chains, and the main-transition of the 2C(12)Br bilayer would occur at a temperature below 0 °C.  相似文献   

2.
Bilayer phase transitions of dioctadecyldimethylammonium bromide (2C(18)Br) and chloride (2C(18)Cl) were observed by differential scanning calorimetry and high-pressure light-transmittance measurements. The 2C(18)Br bilayer membrane showed different kinds of transitions depending on preparation methods of samples under atmospheric pressure. Under certain conditions, the 2C(18)Br bilayer underwent three kinds of transitions, the metastable transition from the metastable lamellar crystal (L(c(2))) phase to the metastable lamellar gel (L(β)) phase at 35.4 °C, the metastable main transition from the metastable L(β) phase to the metastable liquid crystalline (L(α)) phase at 44.5 °C, and the stable transition from the stable lamellar crystal (L(c(1))) phase to the stable L(α) phase at 52.8 °C. On the contrary, the 2C(18)Cl bilayer underwent two kinds of transitions, the stable transition from the stable L(c) phase to the stable L(β) phase at 19.7 °C and the stable main transition from the stable L(β) phase to the stable L(α) phase at 39.9 °C. The temperatures of the phase transitions of the 2C(18)Br and 2C(18)Cl bilayers were almost linearly elevated by applying pressure. It was found from the temperature (T)-pressure (p) phase diagram of the 2C(18)Br bilayer that the T-p curves for the main transition and the L(c(1))/L(α) transition intersect at ca. 130 MPa because of the larger slope of the former transition curve. On the other hand, the T-p phase diagram of the 2C(18)Cl bilayer took a simple shape. The thermodynamic properties for the main transition of the 2C(18)Br and 2C(18)Cl bilayers were comparable to each other, whereas those for the L(c(1))/L(α) transition of the 2C(18)Br bilayer showed considerably high values, signifying that the L(c(1)) phase of the 2C(18)Br bilayer is extremely stable. These differences observed in both bilayers are attributable to the difference in interaction between a surfactant and its counterion.  相似文献   

3.
We investigated the phase behavior of double-tail lipids, as a function of temperature, headgroup interaction and tail length. At low values of the head-head repulsion parameter a(hh), the bilayer undergoes with increasing temperature the transitions from the subgel phase L(c) via the flat gel phase L(beta) to the fluid phase L(alpha). For higher values of a(hh), the transition from the L(c) to the L(alpha) phase occurs via the tilted gel phase L(beta)(') and the rippled phase P(beta)('). The occurrence of the L(beta)(') phase depends on tail length. We find that the rippled structure (P(beta)(')) occurs if the headgroups are sufficiently surrounded by water and that the ripple is a coexistence between the L(c) or L(beta)(') phase and the L(alpha) phase. The anomalous swelling, observed at the P(beta)(') --> L(alpha) transition, is not directly related to the rippled phase, but a consequence of conformational changes of the tails.  相似文献   

4.
Dialkyl lecithin dispersions in water exhibit two phase transitions upon cooling from the lamellar phase (L(α)). At the main transition (T(M)) the L(α) phase changes to a ripple (gel) phase (P(β')) which then transforms to a second gel phase (L(β')) at the "pretransition" (T(P)). We have made accurate density measurements through the various phases for two lecithins having unequal chains: 1-myristoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (MSPC) and 1-stearoyl-2-myristoyl-sn-glycero-3-phosphatidylcholine (SMPC). The measurements were carried out over five heat/cool cycles from 5 to 55 °C, followed by cooling back to 5 °C. The samples were then held at 50 °C for 24 hours, followed by a further three cool/heat cycles. For SMPC we observe an increase in density of the gel phases over the first 5 cycles, followed by much smaller changes after incubation at 50 °C. The lamellar phase also shows an increase in density, albeit much smaller. This parallels the behaviour of 1,2-di-palmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-di-myristoyl-sn-glycero-3-phosphatidylcholine (DMPC) reported earlier (Jones et al., Liquid Crystals 32, 1465 (2005)). For MSPC we observe a decrease in density within the gel phases while T(P) almost disappears after the first cycle. The lamellar phase shows little evidence of any change with each cycle. Within the lamellar phases there is a marked reduction in density on approaching T(M), which is attributed to the formation of transitory gel phase domains. Additional measurements by DSC and X-ray diffraction show that the changes in densities are not accompanied by large changes in transition enthalpies or phase structures. NMR data indicate that the pretransitional event within the L(α) phase is accompanied by ordering of the alkyl chains. The results indicate that the exact nature of the lipid alkyl chains could play a key role in the formation of gel phase patches within membrane bilayers. Their detailed chemical structures merit more attention than by simply assuming a uniform "bending energy" to describe the behaviour.  相似文献   

5.
The bilayer phase behavior of asymmetric phospholipids, palmitoylstearoylphosphatidylcholine (PSPC) and stearoylpalmitoylphosphatidylcholine (SPPC), with different vesicle sizes (large multilamellar vesicle (LMV) and giant multilamellar vesicle (GMV)) was investigated by fluorescence spectroscopy using a polarity-sensitive fluorescent probe Prodan under high pressure. The results were compared with those of a symmetric phospholipid, diheptadecanoyl PC (C17PC). The difference in phase transitions of the PSPC and SPPC bilayers and in thermodynamic quantities of the transitions was hardly observed between LMV and GMV as the case of the C17PC bilayer. On the other hand, the Prodan fluorescence showed clear differences between LMV and GMV of the asymmetric PC bilayers. From the second derivative of Prodan fluorescence spectra, the three dimensional image plots in which we can clearly see the location of Prodan in the bilayer membrane as blue valleys were constructed for LMV and GMV under high pressure. We revealed from the plots that the bilayer packing is significantly dependent on not only the vesicle size but also the acyl-chain asymmetry of PC molecule in addition to the phase states. It was found that the packing of the gel phases of the asymmetric PC bilayers is weaker than that of the symmetric PC bilayer, and the size of vesicle affects the packing of the interdigitated gel phase the most markedly among three gel phases. This study suggests that the Prodan molecules can detect the effect of vesicle size on the phase states for the asymmetric PC bilayers, and they become a useful indicator for various membrane properties, especially bilayer interdigitation.  相似文献   

6.
It is known that when bilayers of some saturated phosphatidylcholines are stored for 3 or more days at approximately 0 degrees C, a lamellar subgel (Lc) phase is detected at temperatures below the pretransition by differential scanning calorimetry (DSC). However, the subgel (Lc) phase and the corresponding subtransition (Lc--> Lbeta') for dimyristoylphosphatidylcholine (DMPC) has not been clearly characterized. In this study, using the temperature jump protocol first developed by Tristram-Nagle et al. for the dipalmitoylphosphatidylcholine (DPPC) system, new and accurate data characterizing the subgel formation and subtransition of DMPC were obtained through DSC and fluorescence spectroscopy with 1,6-diphenyl-1,3,5-hexatriene (DPH). It was discovered that the formation of the DMPC subgel phase requires incubation at temperatures of -5 degrees C or lower for 2 h or more. Kinetics of the subgel formation indicate that it is a very complex process and demonstrates that the planar gel phase is merely metastable below the subtransition, and not the thermodynamically stable phase. The subgel growth of DMPC is proven to be the dehydration of the headgroup region, and the subtransition is a process in which poorly hydrated DMPC becomes hydrated.  相似文献   

7.
The conversion of either the gel or the liquid crystal phase to the most stable subgel phase in dimyristoylphosphatidylethanolamine (DMPE)-water system at a water content of 25 mass% was studied by differential scanning calorimetry and isothermal calorimetry. The calorimetric experiments were performed for two samples depending on whether the thermal treatment of cooling to -60°C was adopted or not. In DSC of varying heating rate, exothermic peaks due to the partial conversion were observed at either temperatures just below the gel-to-liquid crystal phase transition at 50°C or temperatures where the liquid crystal phase is present as a metastable state. The enthalpies of conversion for both the gel and the liquid crystal phase were measured directly by the isothermal calorimetries at 47 and 53°C, respectively, where the exothermic peaks were observed by DSC and were compared with the enthalpy difference between the gel and subgel phases and that between the liquid crystal and subgel phases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The formation of lyotropic mesophases (liquid crystals) in four binary systems n-alkyl glycosides/water was examined in dependence on surfactant concentration, temperature and the chain lengths (alkyl = heptyl, octyl, nonyl, decyl). The binary phase diagrams were established and the enthalpies of phase transitions were measured. The following phase transitions were detected by texture observation and calorimetry: hexagonal phase H, lamellar phase L, cubic phase Q, gel phase G and crystalline phase C. The positions of the corresponding regions of these phases in the phase diagram were determined. Sequence of phases and the localization of the phase regions were depended on the chain length of the alkyl group. So in the binary system n-decyl-β-D-glucoside/water the H-phase was not observed.  相似文献   

9.
Structural changes associated with transition from one phase to another have been examined in several lipid-water systems using time-resolved X-ray diffraction methods. Two types of transition mechanism can be recognized on the basis of scattering originating from the packing of the hydrocarbon chains. Two-state transitions are characterized by coexistence of the wide-angle scattering patterns of the initial and final phases throughout the transition region. Continuous transitions, on the other hand, take place through a series of intermediate states that are believed to arise from deformation of the hydrocarbon chain lattice as one phase transforms into another. Two-state processes are observed as subgel to liquid crystal transitions, and continuous transformations are typical of subgel to gel phase transitions. Examples of these transition types are presented and other transitions that do not appear to conform to either of these mechanisms are described.  相似文献   

10.
Structural changes associated with transition from one phase to another have been examined in several lipid-water systems using time-resolved X-ray diffraction methods. Two types of transition mechanism can be recognized on the basis of scattering originating from the packing of the hydrocarbon chains. Two-state transitions are characterized by coexistence of the wide-angle scattering patterns of the initial and final phases throughout the transition region. Continuous transitions, on the other hand, take place through a series of intermediate states that are believed to arise from deformation of the hydrocarbon chain lattice as one phase transforms into another. Two-state processes are observed as subgel to liquid crystal transitions, and continuous transformations are typical of subgel to gel phase transitions. Examples of these transition types are presented and other transitions that do not appear to conform to either of these mechanisms are described.  相似文献   

11.
The fluorescence spectra of 6-propionyl-2-(dimethylamino)naphthalene (Prodan) were observed as a function of pressure for the bilayer membrane systems of dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC). The wavelength of the emission maximum, lambdamax, was found to be 480, 430, and 500 nm for the liquid crystalline (Lalpha), ripple gel (P'beta), and pressure-induced interdigitated gel (LbetaI) phase, respectively. Since the lambdamax reflects the solvent property around the probe molecules, we could speculate on the location of the Prodan molecules in the bilayer membranes; in the Lalpha phase of the lipid bilayer, the Prodan molecules distribute around the phosphate of the lipids (i.e. the polar region). The Lalpha/P'beta phase transition caused the Prodan molecules to move into the less polar region near the glycerol backbone. The fluorescence intensity of the Prodan in the P'beta phase was dependent on the chain length of the lipids and on pressure; the shorter the chain length of the lipid, the stronger the fluorescence intensity of the Prodan. Moreover, for the DLPC bilayer membrane system, the fluorescence intensity at 430 nm increased with increasing pressure, indicating that the partition of Prodan into the DLPC bilayer membrane is promoted by applying pressure. In the case of the DPPC and DSPC bilayers, as the pressure increased further, the pressure-induced interdigitation caused the Prodan molecules to squeeze out of the glycerol backbone region and to move the hydrophilic region near the bilayer surface. The ratio of fluorescence intensity at 480 nm to that at 430 nm, F480/F430, showed a sharp change at the phase-transition pressure. In the case of the DPPC and DSPC bilayers, the values of F480/F430 showed an abrupt increase above a certain pressure higher than the Lalpha/P'beta transition pressure, which corresponds to the interdigitation from the P'beta to the LbetaI phase. The plot of F480/F430 versus pressure is available for recognition of the bilayer phase transitions, especially the bilayer interdigitation.  相似文献   

12.
In recent years, lipid based nanostructures have increasingly been used as model membranes to study various complex biological processes. For better understanding of such phenomena, it is essential to gain as much information as possible for model lipid structures under physiological conditions. In this paper, we focus on one of such lipids--monoelaidin (ME)--for its polymorphic nanostructures under varying conditions of temperature and water content. In the recent contribution (Soft Matter, 2010, 6, 3191), we have reported the phase diagram of ME above 30 °C and compared with the phase behavior of other lipids including monoolein (MO), monovaccenin (MV), and monolinolein (ML). Remarkable phase behavior of ME, stabilizing three bicontinuous cubic phases, motivates its study at low temperatures. Current studies concentrate on the low-temperature (<30 °C) behavior of ME and subsequent reconstruction of its phase diagram over the entire temperature-water composition space (temperature, 0-76 °C; and water content, 0-70%). The polymorphs found for the monoelaidin-water system include three bicontinuous cubic phases, i.e., Ia3d, Pn3m, and Im3m, and lamellar phases which exhibit two crystalline (L(c1) and L(c0)), two gel (L(β) and L(β*)), and a fluid lamellar (L(α)) states. The fluid isotropic phase (L(2)) was observed only for lower hydrations (<20%), whereas hexagonal phase (H(2)) was not found under studied conditions. Nanostructural parameters of these phases as a function of temperature and water content are presented together with some molecular level calculations. This study might be crucial for perception of the lyotropic phase behavior as well as for designing nanostructural assemblies for potential applications.  相似文献   

13.
Environmentally responsive materials (i.e., materials that respond to changes in their environment with a change in their properties or structure) are attracting increasing amounts of interest. We recently designed and synthesized a series of cleavable multivalent lipids (CMVLn, with n = 2-5 being the number of positive headgroup charges at full protonation) with a disulfide bond in the linker between their cationic headgroup and hydrophobic tails. The self-assembled complexes of the CMVLs and DNA are a prototypical environmentally responsive material, undergoing extensive structural rearrangement when exposed to reducing agents. We investigated the structural evolution of CMVL-DNA complexes at varied complex composition, temperature, and incubation time using small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). A related lipid with a stable linker, TMVL4, was used as a control. In a nonreducing environment, CMVL-DNA complexes form the lamellar (L(α)(C)) phase, with DNA rods sandwiched between lipid bilayers. However, new self-assembled phases form when the disulfide linker is cleaved by dithiothreitol or the biologically relevant reducing agent glutathione. The released DNA and cleaved CMVL headgroups form a loosely organized phase, giving rise to a characteristic broad SAXS correlation profile. CMVLs with high headgroup charge also form condensed DNA bundles. Intriguingly, the cleaved hydrophobic tails of the CMVLs reassemble into tilted chain-ordered L(β') phases upon incubation at physiological temperature (37 °C), as indicated by characteristic WAXS peaks. X-ray scattering further reveals that two of the three phases (L(βF), L(βL), and L(βI)) constituting the L(β') phase coexist in these samples. The described system may have applications in lipid-based nanotechnologies.  相似文献   

14.
We investigated the phase behavior of cholesterol/diheptadecanoylphosphatidylcholine (C17:0-PC) binary bilayer membrane as a function of the cholesterol composition (X(ch)) by fluorescence spectroscopy using 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and differential scanning calorimetry (DSC). The fluorescence spectra showed that the wavelength at the maximum intensity (lambda(max)) changed depending on the bilayer state: ca. 440 nm for the lamellar gel ( [Formula: see text] or L(beta)) and the liquid ordered (L(o)) phases and ca. 490 nm for the liquid-crystalline (L(alpha)) phase. The transition temperatures were determined from the temperature dependence of lambda(max) and endothermic peaks of the DSC thermograms. Both measurements showed that the pre- and main transition disappear around X(ch)=0.05 and 0.30, respectively. The constructed temperature-X(ch) phase diagram resembled a typical phase diagram for a eutectic binary mixture containing a peritectic point. The presence of a peritectic point at X(ch)=0.15 suggested that a complex of cholesterol and C17:0-PC is stoichiometrically formed in the gel phase. Consideration based on the hexagonal lattice model revealed that the compositions of 0.05 and 0.15 correspond to the bilayer states where cholesterol molecules are regularly distributed in different ways. The former is nearly equal to the composition for the membrane occupied entirely with Units (1:18), composed of a cholesterol and 18 surrounding C17:0-PC molecules within the next-next nearest neighbor sites. The latter is represented by a Unit (1:6), including a cholesterol and 6 surrounding C17:0-PC molecules. Further, the disappearance of the main transition at X(ch)=0.30 indicates that the pure L(o) phase can exist in X(ch)>0.30. The eutectic behavior observed in the phase diagram was explainable in terms of phase separation between two different types of regions with different types of regular distributions of cholesterol.  相似文献   

15.
本文报道了常压下LiIO_3晶体的四个新相:ξ′相、η相,θ_1相和θ_2相的获得条件。用X-射线衍射仪和Guinier—Lenne高温单色聚焦相机研究了这四个新相的晶体学数据(以为单位): η-LiIO_3:四方晶系,a=11.563,c=9.342。 θ_1-LiIO_3:正交晶系,a=5.722,b=9.505,c=10.589。 θ_2-LiIO_3:正交晶系,a=7.870,b=7.970,c=7.356。 ξ′-LiIO_3:正交晶系,a=6.498,b=7.118,c=12.265。  相似文献   

16.
We consider a symmetrical poly(styrene- stat-(acrylic acid))- block-poly(acrylic acid), i.e., PSAA- b-PAA, diblock copolymer, with a molar fraction phi AA = 0.42 of acrylic acid, in the more hydrophobic PSAA statistical first block. We investigate its structural behavior at constant concentration in water using small-angle neutron scattering (SANS) by varying (i) the ionization of its acrylic acid motives via the pH by adding NaOH and (ii) the ionic strength of the solution by increasing the NaCl salt concentration c S. We present the resulting morphological phase diagram {pH, c S}, in which we identified two different lamellar phases presenting a smectic long-range order at small-to-intermediate ionizations and a spherical phase with a liquid-like short-range order at larger ionization. In the low-ionization regime, the first lamellar phase comprises a water-free PSAA lamellar core surrounded by a dense poly(acrylic acid) brush swollen with water. Its mostly hydrophobic core still being glassy, this phase is unable to reorganize and is frozen in. A detailed analysis of the SANS data shows the osmotic nature of the polyelectrolyte brush, in which the Na+ counterions are confined so that local electroneutrality is satisfied. Above the pH at which the PSAA statistical block starts ionizing, the PSAA lamellar core melts. The second lamellar phase identified then comprises a PSAA core thinner than that of the frozen-in previous phase, implying a significant increase of the core/water interface and a decrease of the brush surface density. The transition from the first lamellar phase to the second one can be quantitatively shown to result from the balance between the two contributions: (i) the extra interfacial cost between the thinner core and water and (ii) the associated gain in entropy of mixing for the counterions confined inside the brush. At even higher ionization, the diblocks finally form spherical objects with a very small, pH-dependent aggregation number and reach an apparent onset of self-association. When the highest ionization investigated is reached, the cores of these final spherical core-shell objects are found to contain a significant amount of water. We thereby demonstrate that at constant concentration, pH, and ionic strength both trigger a transition from frozen to molten hydrophobic phases as well as unexpected morphological transitions.  相似文献   

17.
The micro- and mesoscopic structure of reverse Pluronic 25R4 in aqueous mixtures has been studied by SANS, SAXS and shear rheology. These techniques have been able to give a deep insight into the complex structure of the system phase diagram, that includes an isotropic water-rich liquid phase L(1), and liquid crystalline phases with hexagonal, E, or lamellar order, D. Particular attention has been paid to the isotropic water-rich phase L(1), which has a large stability region in the temperature-composition phase diagram. This region is crossed by a large "cloudy zone". Below it, namely at low temperature and composition, SANS data show the presence of polymer unimers in a gaussian coil conformation. Above the "cloudy zone", at higher temperature and composition, the L(1) phase is structured as a network of interconnected multimeric micelles. Rheology adds information about the structuring of the L(1) phase showing its incipient hexagonal pre-structuring. This technique is also able to highlight the defective structure of the E phase itself. In the temperature and concentration ranges in which a lamellar phase D is present, SANS and SAXS results are in complete agreement, showing how interlamellar distance is influenced by both polymer composition and temperature according to an "ideal deswelling" or a "not ideal swelling" mechanism. In addition, in the D phase rheology suggests the presence of densely packed vesicles.  相似文献   

18.
Water-driven self-assembly of lipids displays a variety of liquid crystalline phases that are crucial for membrane functions. Herein, we characterize the temperature-induced phase transitions in two compositions of an aqueous self-assembly system of the octyl β-D-glucoside (βGlcOC(8)) system, using steady-state and time-resolved fluorescence measurements. The phase transitions hexagonal ? micellar and cubic ? lamellar were investigated using tryptophan (Trp) and two of its ester derivatives (Trp-C(4) and Trp-C(8)) to probe the polar headgroup region and pyrene to probe the hydrophobic tail region. The polarity of the headgroup region was estimated to be close to that of simple alcohols (methanol and ethanol) for all phases. The pyrene fluorescence indicates that the pyrene molecules are dispersed among the tails of the hydrophobic region, yet remain in close proximity to the polar head groups. Comparing the present results with our previously reported one for βMaltoOC(12), increasing the tail length of the hexagonal phase from C(8) to C(12) leads to less interaction with pyrene, which is attributed to the more random and wobbling motion of the longer alkyl tail. We measured a reduction (more hydrophobic) in the ratio of the vibronic peak intensities of pyrene (I(1)/I(3)) for the lamellar phase compared to that of the cubic phase. The higher polarity in the cubic phase can be correlated to the nature of its interface, which curves toward the bulk water. This geometry also explains the slight reduction in polarity of the headgroup region compared to the other phases. Upon the addition of Trp-C(8), the fluorescence lifetime of pyrene is reduced by 28% in the lamellar and cubic phases, whereas the I(1)/I(3) value is only slightly reduced. The results reflect the dominant role of dynamic interaction mechanism between the C(8) chain of Trp-C(8) and pyrene. This mechanism may be important for these two phases since they participate in the process of membrane fusion. Both lipid compositions show completely reversible temperature-induced phase transitions, reflecting the thermodynamic equilibrium structures of their mesophases. Probing both regions of the different lipid phases reveals a large degree of heterogeneity and flexibility of the lipid self-assembly. These properties are crucial for carrying out different biological functions such as the ability to accommodate various molecular sizes.  相似文献   

19.
The phase sequences of eight fully hydrated synthetic, stereochemically pure glycoglycerolipids with saturated alkyl chains 12-18 carbon atoms long and a glucose, galactose or mannose head group are followed in real time during heating and cooling scans using synchrotron X-ray diffraction. One of them, 1,2-di-O-hexadecyl-3-O-β-D-glucosyl-sn-glycerol, has been characterized by X-ray diffraction for the first time. A summary of the lamellar-non-lamellar transition sequences and reversibility for all eight glycoglycerolipids studied is provided. It includes also observations of intermediate phases, previously not detected. Lattice parameters of the various phases have been determined as functions of chain length in monoglucosides. While the repeat periods of the lamellar phases increase linearly with chain length, an anomalously high lattice spacing of the inverted hexagonal phase is observed at a chain length of 14 carbon atoms. This maximum coincides with the disappearance of the cubic phases from the phase sequence upon chain elongation from 12 to 14 carbon atoms. It thus appears that the expanded HII phase in 14-Glc retains structural characteristics of the anticipated cubic phases. Upon heating to high temperatures, its high lattice spacing gradually approaches that of the 'normal' hexagonal phase. A direct transition from lamellar subgel to inverted hexagonal phase has been observed to proceed without intermediate structures, but with an extended phase coexistence region, in 1,2-di-O-tetradecyl-3-O-β-D-galactosyl-sn-glycerol and 1,2-di-O-octadecyl-3-O-β-D-galactosyl-sn-glycerol. This transition is not reversible on cooling when lamellar phases skipped in the heating scan intervene. By contrast, the direct lamellar gel-inverted hexagonal phase transitions are fully reversible with minor or absent temperature hysteresis.  相似文献   

20.
We study the phase behavior in water of a mixture of natural long chain fatty acids (FAM) in association with ethylenediamine (EDA) and report a rich polymorphism depending on the composition. At a fixed EDA/FAM molar ratio, we observe upon dilution a succession of organized phases going from a lamellar phase to a hexagonal phase and, finally, to cylindrical micelles. The phase structure is established using polarizing microscopy, SAXS, and SANS. Interestingly, in the lamellar phase domain, we observe the presence of defects upon dilution, which SAXS shows to correspond to intrabilayer correlations. NMR and FF-TEM techniques suggest that these defects are related to an increase in the spontaneous curvature of the molecule monolayers in the lamellae. ATR-FTIR spectroscopy was also used to investigate the degree of ionization within these assemblies. The successive morphological transitions are discussed with regards to possible molecular mechanisms, in which the interaction between the acid surfactant and the amine counterion plays the leading role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号