首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
An analogy is presented between periodic persistent currents in mesoscopic rings and staggerings of gamma energy transitions from some nuclear high-spin states. Various sources of damping of the expected periodic structures in both physical systems are compared. This discussion provides, in the nuclear case, a tentative explanation of the scarcity of such staggerings, their appearance near 150Gd and the existence of a spin-window for their observation. Received: 21 July 1997 / Revised version: 13 October 1997  相似文献   

2.
A Cooper pair from a s-wave superconductor (S) entering a conventional charge density wave (CDW) below the Peierls gap dephases on the Fermi wavelength while one particle states are localized on the CDW coherence length ξCDW. It is thus practically impossible to observe a Josephson current through a CDW. The paths following different sequences of impurities interfere destructively, due to the different electron and hole densities in the CDW. The same conclusion holds for averaging over the conduction channels in the ballistic system. We apply two microscopic approaches to this phenomenon: (i) a Blonder, Tinkham, Klapwijk (BTK) approach for a single highly transparent S-CDW interface; and (ii) the Hamiltonian approach for the Josephson effect in a clean CDW and a CDW with non magnetic disorder. The Josephson effect through a spin density wave (SDW) is limited by the coherence length ξSDW, not by the Fermi wave-length. A Josephson current through a SDW might be observed in a structure with contacts on a SDW separated by a distance ξSDW.  相似文献   

3.
A one-dimensional model of interacting electrons with on-site U, nearest-neighbor V, and pair-hopping interaction W is studied at half-filling using the continuum limit field theory approach. The ground state phase diagram is obtained for a wide range of coupling constants. In addition to the insulating spin-density wave (SDW) and charge-density wave (CDW) phases for large U and V, respectively, we identify a bond-charge-density-wave (BCDW) phase W < 0, | U - 2V| < | 2W| and a bond-spin-density-wave (BSDW) for W > 0, | U - 2V| < W. The possibility of bond-located ordering results from the site-off-diagonal nature of the pair-hopping term and is a special feature of the half-filled band case. The BCDW phase corresponding to an enhanced Peierls instability in the system. The BdSDW is an unconventional insulating magnetic phase, characterized by a gapless spin excitation spectrum and a staggered magnetization located on bonds between sites. The general ground state phase diagram including insulating, metallic, and superconducting phases is discussed. A transition to the η-superconducting phase at | U - 2V| ≪ 2t?W is briefly discussed. Received 20 February 2002 / Received in final form 11 April 2002 Published online 19 July 2002  相似文献   

4.
We study the interplay of Anderson localization and interaction in a two chain Hubbard ladder allowing for arbitrary ratio of disorder strength to interchain coupling. We obtain three different types of spin gapped localized phases depending on the strength of disorder: a pinned 4k F Charge Density Wave (CDW) for weak disorder, a pinned 2k F CDWπ for intermediate disorder and two independently pinned single chain 2k F CDW for strong disorder. Confinement of electrons can be obtained as a result of strong disorder or strong attraction. We give the full phase diagram as a function of disorder, interaction strength and interchain hopping. We also study the influence of interchain hopping on localization length and show that localization is enhanced by a small interchain hopping but suppressed by a large interchain hopping. Received 6 April 2001  相似文献   

5.
The spin density wave(SDW) — charge density wave(CDW) phase transition and the magnetic properties in a half-filled quasi-one-dimensional organic polymer are investigated by the world line Monte Carlo simulations. The itinerant π electrons moving along the polymer chain are coupled radically to localized unpaired d electrons, which are situated at every other site of the polymer chain. The results show that both ferromagnetic and anti-ferromagnetic radical couplings enhance the SDW phase and the ferromagnet order of the radical spins, but suppress the CDW phase. By finite size scaling, we are able to obtain the phase transition line in the parameter space. The ferromagnetic order of the radical spins are observed to coexist with the SDW phase. As compared to the system being free of the radical coupling, the phase transition line is shifted upward in the U-V parameter space in favor of larger V, where U is the on-site repulsion and V is the nearest-neighbor interaction between the π electrons. All of these findings can be understood qualitatively by a second-order perturbation theory starting from the classical state at zero temperature in the strong coupling limit. We also address the consequences of the radical coupling for the persistent current if the polymer chain is fabricated as a mesoscopic ring.  相似文献   

6.
The phase diagram of the organic superconductor (TMTSF)2PF6has been revisited using transport measurements with an improved control of the applied pressure. We have found a 0.8 kbar wide pressure domain below the critical point (9.43 kbar, 1.2 K) for the stabilisation of the superconducting ground state featuring a coexistence regime between spin density wave (SDW) and superconductivity (SC). The inhomogeneous character of the said pressure domain is supported by the analysis of the resistivity between T SDW and T SC and the superconducting critical current. The onset temperature T SC is practically constant ( 1.20±0.01 K) in this region where only the SC/SDW domain proportion below T SC is increasing under pressure. An homogeneous superconducting state is recovered above the critical pressure with T SC falling at increasing pressure. We propose a model comparing the free energy of a phase exhibiting a segregation between SDW and SC domains and the free energy of homogeneous phases which explains fairly well our experimental findings. Received 3 September 2001 and Received in final form 9 November 2001  相似文献   

7.
We show that the dynamics of disordered charge density waves (CDWs) and spin density waves (SDWs) is a collective phenomenon. The very low temperature specific heat relaxation experiments are characterized by: (i) “interrupted” ageing (meaning that there is a maximal relaxation time); and (ii) a broad power-law spectrum of relaxation times which is the signature of a collective phenomenon. We propose a random energy model that can reproduce these two observations and from which it is possible to obtain an estimate of the glass cross-over temperature (typically T g≃ 100-200 mK). The broad relaxation time spectrum can also be obtained from the solutions of two microscopic models involving randomly distributed solitons. The collective behavior is similar to domain growth dynamics in the presence of disorder and can be described by the dynamical renormalization group that was proposed recently for the one dimensional random field Ising model [D.S. Fisher, P. Le Doussal, C. Monthus, Phys. Rev. Lett. 80, 3539 (1998)]. The typical relaxation time scales like ∼τexp(T g/T). The glass cross-over temperature Tg related to correlations among solitons is equal to the average energy barrier and scales like T g∼ 2xξΔ. x is the concentration of defects, ξ the correlation length of the CDW or SDW and Δ the charge or spin gap. Received 12 December 2001  相似文献   

8.
Starting from the static Fukuyama-Lee-Rice equation for a three-dimensional incommensurate charge density wave (CDW) in quasi one-dimensional conductors a solvable model for local phase pinning by impurities is defined and studied. We find that average CDW energy and average pinning force show critical behaviour with respect to the pinning parameter h. Specifically the pinning force exhibits a threshold at h=1 with exponent . Our model exemplifies a general concept of local impurity pinning in which the force exerted by the impurity on the periodic CDW structure becomes multivalued and metastable states appear beyond a threshold. It is found that local impurity pinning becomes less effective at low temperatures and may eventually cease completely. These results are independent of spatial dimensionality as expected for local impurity pinning. Comparison with Larkin's model is also made. Received 8 July 1998  相似文献   

9.
We demonstrate for the first time that a periodic array of submicrometer holes (antidots) can be patterned into thin single NbSe3 crystals. We report on the study of Charge Density Wave (CDW) transport of the network of mesoscopic units between antidots. Size of the elementary unit can be as small as 0.5 μm along the chain axis and in cross-section. We observe size effects for Ohmic residual resistance and in CDW transport current-voltage characteristics in submicronic networks. Received: 25 November 1997 / Received in final form: 30 March 1998 / Accepted: 6 April 1998  相似文献   

10.
Full-potential Linearized Augmented Plane Wave calculations are performed to investigate the properties of the electronic charge of metallic multilayers formed by non-magnetic and magnetic elements (i.e. Ag, Cu and Fe). The multilayer structure is of the type An, A n B n or (AB)n where A, B indicate Ag, Cu and Fe and n is the number of layers of the element A or B. The problem addressed by this study is the transition from the 2D behavior of the isolated monolayer to the 3D bulklike character. Therefore the calculations, carried out at paramagnetic level, illustrate the dependence of the density of states on the multilayer thickness and composition. For the three elements the main feature of the inter-layer coupling is the absence of charge intermixing and hybridization. For structures with a number of layers n? 5 the density of states bandwidth has a decrease, with respect to the bulk value, approximately proportional to the reduced coordination. At the critical thickness n = 5 and above, a noticeable difference exists between the charge in the outer layers, with reduced coordination and bandwidth, and the central layers with a bulklike density of states. Averaging between these contributions leads to the re-installment of bulklike properties. These results are in essential agreement with analytical band theories and quantum mechanical calculations for similar systems and with experiments. Received 3 October 2001  相似文献   

11.
The infrared transmission of the quasi-one dimensional charge-density-wave (CDW) conductor blue bronze (K0.3MoO3) is affected by polarization of the CDW, and therefore by application of a voltage near or above the threshold for CDW depinning. In this paper, we compare the spectra associated with the relative change in transmission taken for different temperatures and oscillating voltages. We find that the phonon spectrum is affected by CDW polarization; the linewidths or frequencies of most phonons change by cm-1. However, no new intragap states that can be associated with current injection are observed; i.e. the spectra associated with polarization of the CDW in the crystal bulk is identical to that associated with CDW current injection near the contacts. Our results indicate that, for light polarized perpendicular to the conducting chains, the density (n), cross-section , and bandwidth of intragap states are related by: n (?cm-1)-1. For expected values of the cross-section and bandwidth, this implies that the intragap states can be optically excited for a time less than s. Received 21 February 2000  相似文献   

12.
We report on measurements of the voltage dependence of the complex shear compliance of two crystals of the charge-density-wave (CDW) conductor NbSe3, for torsional frequencies between 1 Hz and 71 Hz. For both samples, there is a frequency independent, 1% increase of the magnitude of the compliance when the voltage exceeds the threshold for CDW depinning, but the internal friction has a striking sample dependence which we do not understand. For one sample, there is a frequency independent decrease in internal friction with CDW depinning, suggesting that the elastic changes are not relaxational and might reflect changes in the screening of the crystal strain by the CDW. For the second sample, the sign and magnitude of the change in internal friction is strongly frequency dependent, which we associate with a change in screening due to the finite electron diffusion time. The second sample also exhibits a frequency dependent peak in internal friction near threshold that may reflect relaxation of the CDW phase. Received 14 August 2001 and Received in final form 3 October 2001  相似文献   

13.
Based on the path integral approach the partition function of a many body system with separable two body interaction is calculated in the sense of a semiclassical approximation. The commonly used Gaussian type of approximation, known as the perturbed static path approximation (PSPA), breaks down near a crossover temperature due to instabilities of the classical mean field solution. It is shown how the PSPA is systematically improved within the crossover region by taking into account large non-Gaussian fluctuations and an approximation applicable down to very low temperatures is carried out. These findings are tested against exact results for the archetypical cases of a particle moving in a one dimensional double well and the exactly solvable Lipkin-Meshkov-Glick model. The extensions should have applications in finite systems at low temperatures as in nuclear physics and mesoscopic systems, e.g. for gap fluctuations in nanoscale superconducting devices previously studied within a PSPA type of approximation. Received 28 March 2002 Published online 17 September 2002  相似文献   

14.
We investigate the physical properties of two coupled chains of electrons, with a nearly half-filled band, as a function of the interchain hopping t and the doping. We show that upon doping, the system undergoes a metal-insulator transition well described by a commensurate-incommensurate transition. By using bosonization and renormalization we determine the full phase diagram of the system, and the physical quantities such as the charge gap. In the commensurate phase two different regions, for which the interchain hopping is relevant and irrelevant exist, leading to a confinement-deconfinement crossover in this phase. A minimum of the charge gap is observed for values of t close to this crossover. At large t the region of the commensurate phase is enhanced, compared to a single chain. At the metal-insulator transition the Luttinger parameter takes the universal value K ρ * = 1, in agreement with previous results on special limits of this model. Received 31 July 2000  相似文献   

15.
The configuration-dependent cranked Nilsson-Strutinsky approach has been employed to study the properties and band structures at high spin in the Z = N odd-odd nuclei 46V and 50Mn. The observed bands are explained and terminating states are confirmed by the calculations. The calculated and observed bands are in good agreement without normalization, especially for terminating states. Possible bands with rotation around the intermediate axis and the effect of γ-deformation on the total energy of several interesting configurations are discussed. Received: 2 April 2002 / Accepted: 27 January 2003 / Published online: 15 April 2003  相似文献   

16.
The extrapolation of small-cluster exact-diagonalisation calculations and the Monte-Carlo method is used to study the spin-one-half Falicov–Kimball model extended by the spin-dependent Coulomb interaction (J) between the localized f and itinerant d electrons as well as the on-site Coulomb interaction (U ff ) between the localized f electrons. It is shown that in the symmetric case the ground-state phase diagram of the model has an extremely simple structure that consists of only two phases, and namely, the charge-density-wave (CDW) phase and the spin-density-wave (SDW) phase. The nonzero temperature studies showed that these phases persist also at finite temperatures. The critical temperature T c for a transition from the low-temperature ordered phases to the high-temperature disordered phase is calculated numerically for various values of J and U ff .  相似文献   

17.
18.
We show that the spin-orbit potential of the nuclear mean field destroys isoscalar superfluid correlations in self-conjugate nuclei. Using group theory and boson mapping techniques on a Hamiltonian including single particle splittings and a SO ST(8) pairing interaction, we give analytical expressions for the spin-orbit dependence of some N = Z properties such as the relative position of T = 0 and T = 1 states in odd-odd systems or double binding-energy differences of even-even nuclei. Received: 12 April 2000 / Accepted: 25 May 2000  相似文献   

19.
A continuum medium approach is proposed to describe the finite size dependent effects for the 1D isotropic Heisenberg ferromagnet. The results are compared to the exact Bethe ansatz solution for the finite chain. The approach is shown to adequately account for the behaviour of the eigenfunctions and eigenenergies. The continuum is obtained by integration in Fourier space via introduction of cut-offs at the integration limits and analytical continuation from the discrete lattice to the continuous medium. It offers a new perspective on the instability of bound states, and reveals the linear behaviour of the amplitude in the critical region and other features of the model in an analytical way. We further apply this approach to investigate the long wavelength expansion of the master equation and to show the route of constructing reliable approximations valid for more complicated models. It is concluded that the approach can be useful to study mesoscopic spin systems. Received 28 May 2000 and Received in final form 6 April 2001  相似文献   

20.
We show that the electronic states in a one-dimensional (1D) Anderson model of diagonal disorder with long-range correlation proposed by de Moura and Lyra exhibit localization-delocalization phase transition in varying the energy of electrons. Using transfer matrix method, we calculate the average resistivity and investigate how it changes with the size of the system N. For given value of α (> 2) we find critical energies Ec1 and Ec2 such that the resistivity decreases with N as a power law ∝ N - γ for electron energies within the range of [E c1, E c2], and exponentially grows with N outside this range. Such behaviors persist in approaching the transition points and the exponent γ is in the range from 0.92 to 0.96. The origin of the delocalization in this 1D model is discussed. Received 18 December 2001 / Received in final form 2 May 2002 Published online 14 October 2002 RID="a" ID="a"e-mail: sjxiong@nju.edu.cn  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号