首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
    
Summary Two alternative methods for the estimation of arsenate in presence of arsenite and copper have been developed and are described. These consist of (i) reduction of arsenate to arsenite by fuming with sulphur and sulphuric acid, and estimation of total arsenite after complexing copper with citrate; (ii) removal of copper as cuprous iodide, reduction of arsenate to arsenite by red phosphorus-iodine and estimation of the total arsenite. Both the methods give excellent results and are suitable for the analysis of arsenical insecticides.  相似文献   

2.
Speciation of arsenic in body fluids   总被引:1,自引:0,他引:1  
Suzuki KT  Mandal BK  Ogra Y 《Talanta》2002,58(1):111-119
Inorganic arsenic is metabolized by consecutive reduction and methylation reactions to dimethylated arsenic (DMA), and then excreted into the urine mostly in the form of DMA. Therefore, arsenic metabolites in the body fluids and organs/tissues are present in the form of inorganic (arsenite and arsenate) and methylated arsenics (MMA and DMA). Although pentavalent arsenics can be present mostly in the form of free ions, trivalent ones may be present more in the forms conjugated with thiol groups of glutathione (GSH) or proteins. Arsenic in the body fluids (plasma, bile and urine) is present in the soluble forms and can be speciated on ion exchange columns by HPLC with on-line detection by an inductively coupled argon plasma-mass spectrometer (ICP-MS). Free forms of arsenite, arsenate, and monomethylarsonous, monomethylarsonic, dimethylarsinous and dimethylarsinic acids in the body fluids have been demonstrated to be speciated simultaneously within 10 min or so on both anion and cation exchange columns together with arsenobetaine (AsB) and arsenocholine (AsC). Trivalent arsenics conjugated with GSH were eluted in intact forms on an anion exchange column but were liberated into free forms on a cation exchange column. Thus, free and GSH-conjugated arsenic metabolites in the bile and urine have been speciated simultaneously on ion exchange columns by HPLC-ICP-MS.  相似文献   

3.
The competitive sorption of carbonate and arsenic to hematite was investigated in closed-system batch experiments. The experimental conditions covered a pH range of 3-7, arsenate concentrations of 3-300 μM, and arsenite concentrations of 3-200 μM. Dissolved carbonate concentrations were varied by fixing the CO(2) partial pressure at 0.39 (atmospheric), 10, or 100 hPa. Sorption data were modeled with a one-site three plane model considering carbonate and arsenate surface complexes derived from ATR-FTIR spectroscopy analyses. Macroscopic sorption data revealed that in the pH range 3-7, carbonate was a weak competitor for both arsenite and arsenate. The competitive effect of carbonate increased with increasing CO(2) partial pressure and decreasing arsenic concentrations. For arsenate, sorption was reduced by carbonate only at slightly acidic to neutral pH values, whereas arsenite sorption was decreased across the entire pH range. ATR-FTIR spectra indicated the predominant formation of bidentate binuclear inner-sphere surface complexes for both sorbed arsenate and sorbed carbonate. Surface complexation modeling based on the dominant arsenate and carbonate surface complexes indicated by ATR-FTIR and assuming inner-sphere complexation of arsenite successfully described the macroscopic sorption data. Our results imply that in natural arsenic-contaminated systems where iron oxide minerals are important sorbents, dissolved carbonate may increase aqueous arsenite concentrations, but will affect dissolved arsenate concentrations only at neutral to alkaline pH and at very high CO(2) partial pressures.  相似文献   

4.
In the present study, we demonstrated for the first time the immunotoxic effects of organic arsenic compounds in marine animals, namely arsenocholine [AsCho; trimethyl(2-hydroxyethyl)arsonium cation], arsenobetaine [AsBe; the trimethyl(carboxymethyl)arsonium zwitterion] and the tetramethylarsonium ion (TetMA), to murine principal immune effector cells (macrophages and lymphocytes), comparing them with the effects of inorganic arsenicals in vitro . Inorganic arsenicals (arsenite and arsenate) showed strong cytotoxicity to both macrophages and lymphocytes. The concentration of arsenite that reduced the number of surviving cells to 50% of that in untreated controls (IC50) was 3–5 μmol dm−3, and the cytotoxicity of arsenate (IC50=100 μ-1 m mol dm−3) was lower than that of arsenite. Compared with these findings, trimethylarsenic compounds in marine animals, AsCho and AsBe, were less toxic even at a concentration over 10 mmol dm−3 to both macrophages and lymphocytes; however, TetMA had weak, but significant, cytotoxicity to these cells (IC50 was about 6 mmol dm−3).  相似文献   

5.
Procedures are described for the determination of arsenite, arsenate and monomethylarsonic acid in aqueous samples. The arsenicals (after reduction of arsenic to the tervalent state) readily react with 2,3-dimercaptopropanol (BAL) to yield their BAL complexes. The products are extracted with benzene and introduced into a gas Chromatograph equipped with a flame-photometric detector for sulphur. One aliquot of sample is treated with stannous chloride solution and potassium iodide solution to reduce arsenate and monomethylarsonic acid, then BAL is added and the complexes are extracted with benzene. The extract is analysed for total inorganic As plus monomethylarsonic acid. Magnesia mixture and phosphate solution are added to another aliquot to remove arsenate by co-precipitation with magnesium ammonium phosphate. The precipitate is filtered off and arsenite determined in the filtrate. The detection limits are 0.02 ng of As for arsenate and arsenite and 0.04 ng of As for monomethylarsonic acid.  相似文献   

6.
Because stabilization of arsenite in water samples during transit and storage is troublesome, this work deals with a method to prevent this by on-site selective coprecipitation of arsenite with dibenzyldithiocarbamate and recovery of the coprecipitate by filtration through a 0.45-microm membrane filter. In the laboratory arsenic on the filter is quantitatively released by oxidation of arsenite to arsenate with H2O2 (6%) in alkaline medium (8 mmol L(-1) NaOH) at elevated temperature (85 degrees C) for 30 min followed by ultratrace determination by routine HGAFS and ICP-MS. It is shown that arsenate contamination of the coprecipitate is so low that arsenate concentrations three orders of magnitude higher than the arsenite concentration do not interfere; this is essential, because arsenate is usually the dominant arsenic species in water. Because significant preconcentration can be achieved in the solution obtained from the leached filter (normally a factor 20 but easily increased to 100) very low detection limits can be obtained (only limited by the purity of the materials and the cleanliness of working); a realistic limit of determination is 0.01 microg L(-1) arsenite. The procedure was used for the determination of arsenite in two ground waters from an ash depository site in the Salek valley (Slovenia). The matrix contained some elements at very high levels but this did not impair the efficiency of arsenite coprecipitation. The results obtained by use of HGAFS and ICP-MS were not significantly different at the 5% level for sub-microg L(-1) arsenite concentrations.  相似文献   

7.
This paper first deals with the screening and optimization of Fe(III)-based adsorbents for arsenic adsorption from 0.2 to 16 ppm test solutions of arsenite/arsenate. The best adsorption capacity has been reported on alpha-FeO(OH) on an adsorbent weight basis. Better results were found on intercalated Fe-montmorillonites for arsenite adsorption below the equilibrium dissolved As concentration of 310 ppb and for arsenate adsorption in all of the concentrations studied. Next, the speciation of As adsorbed was performed by As K-edge x-ray absorption fine structure (XAFS) combined with high-energy-resolution fluorescence spectrometry. Major oxidative adsorption of arsenite was observed on Fe-montmorillonite from the 0.2-16 ppm test solutions. The reasons for the higher capacity of arsenic adsorption and oxidative adsorption of arsenite on Fe-montmorillonite are discussed.  相似文献   

8.
Because stabilization of arsenite in water samples during transit and storage is troublesome, this work deals with a method to prevent this by on-site selective coprecipitation of arsenite with dibenzyldithiocarbamate and recovery of the coprecipitate by filtration through a 0.45-μm membrane filter. In the laboratory arsenic on the filter is quantitatively released by oxidation of arsenite to arsenate with H2O2 (6%) in alkaline medium (8 mmol L–1 NaOH) at elevated temperature (85?°C) for 30 min followed by ultratrace determination by routine HGAFS and ICP–MS. It is shown that arsenate contamination of the coprecipitate is so low that arsenate concentrations three orders of magnitude higher than the arsenite concentration do not interfere; this is essential, because arsenate is usually the dominant arsenic species in water. Because significant preconcentration can be achieved in the solution obtained from the leached filter (normally a factor 20 but easily increased to 100) very low detection limits can be obtained (only limited by the purity of the materials and the cleanliness of working); a realistic limit of determination is 0.01 μg L–1 arsenite. The procedure was used for the determination of arsenite in two ground waters from an ash depository site in the ?alek valley (Slovenia). The matrix contained some elements at very high levels but this did not impair the efficiency of arsenite coprecipitation. The results obtained by use of HGAFS and ICP–MS were not significantly different at the 5% level for sub-μg L–1 arsenite concentrations.  相似文献   

9.
Frenzel W  Titzenthaler F  Elbel S 《Talanta》1994,41(11):1965-1971
This paper describes the application of the well-known Molybdenum Blue method for selective determination of arsenite in a flow injection system. Selectivity is achieved by on-line separation of the main interferents phosphate, arsenate and silicate using a strong anion-exchange microcolumn located in the aspiration line of injection valve. Arsenite passing through the microcolumn unretained is determined using Molybdenum Blue method following in-line oxidation to arsenate by permanganate. A thorough investigation of optimal experimental conditions for both, the separation of interferents and sensitive detection of arsenite is presented. The method developed permits arsenite to be determined in the concentration range 5-500 microg/l with high precision and reliability. A sample throughput of 20 hr(-1) is achieved. Phosphate, arsenate and silicate do not interfere at concentration levels significantly higher than that of arsenite. The application to real water samples reveals excellent recovery of spiked samples and the absence of matrix interferences.  相似文献   

10.
Arsenic adsorption onto pillared clays and iron oxides   总被引:12,自引:0,他引:12  
Arsenic adsorption was carried out on simple materials such as goethite and amorphous iron hydroxide, and more complex matrices such as clay pillared with titanium(IV), iron(III), and aluminum(III). These matrices were synthesized from a bentonite whose montmorillonitic fraction was pillared according to optimized parameters. These sorbents were characterized by various methods: XRD, FTIR, BET, DTA/TGA, surface acidity, and zetametry. Elimination of arsenite and arsenate as a function of pH was studied. Arsenate elimination was favored at acidic pH, whereas optimal arsenite elimination was obtained at 4相似文献   

11.
Flow injection analysis (FIA) and high-performance liquid chromatography double-focusing sector field inductively coupled plasma mass spectrometry (HPLC-DF-ICP-MS) were used for total arsenic determination and arsenic speciation of xylem sap of cucumber plants (Cucumis sativus L.) grown in hydroponics containing 2 μmol dm−3 arsenate or arsenite, respectively. Arsenite [As(III)], arsenate [As(V)] and dimethylarsinic acid (DMA) were identified in the sap of the plants. Arsenite was the predominant arsenic species in the xylem saps regardless of the type of arsenic treatment, and the following concentration order was determined: As(III) > As(V) > DMA. The amount of total As, calculated taking into consideration the mass of xylem sap collected, was almost equal for both treatments. Arsenite was taken up more easily by cucumber than arsenate. Partial oxidation of arsenite to arsenate (<10% in 48 h) was observed in the case of arsenite-containing nutrient solutions, which may explain the detection of arsenate in the saps of plants treated with arsenite.  相似文献   

12.
High-performance liquid chromatography (h.p.l.c.) is used for separation of arsenite, arsenate, monomethylarsinate (MMA) and dimethylarsonate (DMA) followed by continuous sodium tetrahydroborate reduction and atomic absorption spectrometric detection. Sample preconcentration, offering improved detection limits for the individual species and the removal of matrix interferences, is achieved with a pellicular anion-exchange column. The arsenic species are then separated on a strong anion-exchange column placed in series with the preconcentration column. Detection limits of 2 ng (as arsenic) for arsenite, arsenate and MMA, and 1 ng for DMA. Results for arsenic species in soil waters and commercial bottle waters are given.  相似文献   

13.
Mycobacterium neoaurum demethylates both methylarsonic acid and methylarsonous acid to mixtures of arsenate and arsenite. After 28 days of incubation, the yields of inorganic arsenic were 27% from arsenate and 43% from arsenite. A time study of the demethylation of methylarsonic acid by M. neoaurum showed that demethylation occurs rapidly during the growth and stationary phases of the bacterium, and indicates that MMA(V) is reductively demethylated to arsenite. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Adsorption methods have been developed for the removal of arsenic from solution motivated by the adverse health effects of this naturally occurring element. Iron exchanged natural zeolites are promising materials for this application. In this study we introduced iron species into a clinoptilolite-rich zeolitic tuff by the liquid exchange method using different organic and inorganic iron salts after pretreatment with NaCl and quantified the iron content in all trials by XRF spectroscopy. The materials were characterized by XRD, FTIR, FTIR-DR, UV-vis, cyclic voltammetry, ESR and M?ssbauer spectroscopies before and after adsorption of arsenite and arsenate. The reached iron load in the sample T+Fe was %Fe(2)O(3)-2.462, n(Fe)/n(Al)=0.19, n(Si)/n(Fe)=30.9 using FeCl(3), whereby the iron leachability was 0.1-0.2%. The introduced iron corresponded to four coordinated species with tetrahedral geometry, primarily low spin ferric iron adsorbing almost 12 mug g(-1) arsenite (99% removal) from a 360 mug(As(III)) L(-1) and 6 mug g(-1) arsenate from a 230 mug(As(V)) L(-1). Adsorption of arsenite and arsenate reached practically a plateau at n(Fe)/n(Si)=0.1 in the series of exchanged tuffs. The oxidation of arsenite to arsenate in the solution in contact with iron modified tuff during adsorption was observed by speciation. The reduction of ferric iron to ferrous iron could be detected in the electrochemical system comprising an iron-clinoptilolite impregnated electrode and was not observed in the dried tuff after adsorption.  相似文献   

15.
Hydride generation-flame atomic-absorption spectrometry (HG-FAAS) was used as a continuous detection system for arsenic in the eluate from high-performance liquid chromatography (HPLC). Four arsenic species (arsenite, arsenate, monomethylarsonate and dimethylarsinate) were detected separately with the HPLC-HG-FAAS system equipped with an anion-exchange column. When hijiki (Hizikia fusiforme) extract was examined, arsenate was found predominantly and arsenite and dimethylarsinate were also detected. Liver supernatant fraction obtained from mice administered orally with arsenite was also studied with the HPLC-HG-FAAS system equipped with a gel permeation column. In addition to free or low-molecular-weight ligand-bound arsenic, high-molecular-weight protein-bound arsenic fractions were also detected.  相似文献   

16.
Arsenic retention on natural red earth (hereafter NRE) was examined as a function of pH, ionic strength, and initial arsenic loading using both macroscopic and spectroscopic methods. Proton binding sites on NRE were characterized by potentiometric titrations yielding an average pH(zpc) around 8.5. Both As(III)- and As(V)-NRE surface configurations were postulated by vibration spectroscopy. Spectroscopically, it is shown that arsenite forms monodentate complexes whereas arsenate forms bidendate complexes with NRE. When 4相似文献   

17.
This paper describes a rapid method to determine arsenite assay and arsenate impurity in Arsenic Trioxide Injection using a single conductivity detector. The arsenite assay was determined in a non-suppressed conductivity detection mode and arsenate impurity was quantified in a suppressed conductivity detection mode. Dual-conductivity detections were enabled by valve switching and time programming. The method was validated with respect to specificity, linearity, precision, accuracy, stability, and limit of quantification. The limit of detection and quantification for arsenite were 0.855 mg/L and 2.593 mg/L, and 0.044 mg/L and 0.133 mg/L for arsenate, respectively.  相似文献   

18.
Mn-substituted iron oxyhydroxide (Mn(0.13)Fe(0.87)OOH) was prepared by the oxidation of ferrous carbonate precipitated from ferrous sulfate and sodium carbonate solutions. X-ray diffraction analysis led to the conclusion that the sample was basically iron manganese hydroxide with bixbyite structure. The sample exhibited a surface area of 101 m2 g(-1) and a pore volume of 0.35 cm3 g(-1). Batch experiments were conducted to study the adsorption of arsenite and arsenate species onto Mn-substituted iron oxyhydroxide (MIOH) and adsorption equilibrium time was evaluated. The temperature of adsorption was varied from 30 to 60 degrees C. The maximum uptake of arsenite and arsenate was found to be 4.58 and 5.72 mg g(-1), respectively. Zeta potential measurements and FT-IR spectral studies were also conducted to study the nature of adsorption. In both cases, adsorption was best described by Langmuir isotherm and activation energies as calculated from a model-free isoconversional method were found to be on the order of 15-24 and 45-67 kJ mol(-1) for arsenate and arsenite, respectively.  相似文献   

19.
Summary Speciation and quantitative analysis of arsenical compounds are performed by using high-performance liquid chromatography (HPLC) with direct UV detection. Ion chromatography has been used to separate mixtures of arsenical compounds (arsenite, MMA, DMA, arsenate) on an anion-exchange column using phosphate buffer (1 mmol/l, pH=5.3) as eluent. Ion -pair reversed-phase chromatography has been investigated to resolve mixtures of arsenite, arsenate, MMA, DMA, arsenobetaine and arsenocholine on an octadecyl-bonded silica column using water as mobile phase (pH=7.3) and tetrabutylammonium cation as ion-pairing reagent. The influence of several parameters (pH, the ion-pairing reagent concentration or the amount of methanol in the mobile phase) has been studied to determine the best chromatographic conditions.  相似文献   

20.
Pooled livers and pooled kidneys from rats or mice were homogenized and spiked with arsenite or arsenate in the concentration range 1.3–20 μmol dm?3. Methylarsenic and dimethylarsenic compounds were determined by the hydride generation technique in the homogenates after a 90 min incubation at 37°C. The rat homogenates methylated arsenite and arsenate more efficiently than the mouse homogenates. Monomethylated arsenic was present in larger amounts than dimethylated arsenic in the rat homogenates. In the absence of reduced glutathione (GSH), no methylation occurred. Addition of GSH promoted monomethylation and dimethylation, whereas dithiothreitol and mercaptoethanol (10 mmol dm?3) fostered only monomethylation. The amounts of monomethylated arsenic in the rat liver homogenates increased with increasing arsenite concentration (1.3–20 μmol dm?3) however, the percentage of arsenic that had been methylated decreased. A similar trend, but with much less monomethylarsenic formed, was observed for arsenate-spiked homogenates. Rat kidney homogenates methylated arsenite and arsenate to a much smaller extent than rat liver homogenates. The Km values for the monomethylation in rat liver homogenates were found to be 5.3 μmol dm?3 for arsenite and 59 μmol dm?3 for arsenate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号