首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A three-dimensional magnetic vortex, propagating in the whistler mode, has been produced in a laboratory plasma. Its magnetic energy is converted into electron kinetic energy. Non-Maxwellian electron distributions are formed which give rise to kinetic whistler instabilities. The propagating vortex radiates whistler modes along the ambient magnetic field. A new instability mechanism is proposed.  相似文献   

2.
Channels of excess plasma density aligned along the magnetic field guide whistler without spatial divergence. If the whistler wave is of sufficient intensity it maintains the channel through its own radiation pressure which pushes the plasma towards regions of increasing wave amplitude.  相似文献   

3.
The large-amplitude whistler wave propagating at an angle to the external magnetic field is shown to decay parametrically into another whistler wave and a “cold” ion-Bernstein wave. The expressions for threshold pump power and growth rate are obtained. A possible application of this parametric process to the magnetospheric plasma is discussed.  相似文献   

4.
The results of experiments studying the propagation of a high-frequency whistler wave in a magnetized plasma duct in the presence of an intense low-frequency wave also related to the whistler frequency range are reported. Amplitude-frequency modulation of the high-frequency whistler wave trapped in the duct was observed. A deep amplitude modulation of the signal that can lead to its splitting into separate wave packets is observed. It is shown that an increase in the wave propagation path leads to a broadening of the wave frequency spectrum and to a shift of the signal spectrum predominantly toward the red side. The transformation of the frequency of the high-frequency wave is related with the time-dependent perturbation of the external magnetic field by the field of the low-frequency whistler wave (the relative perturbation of the magnetic field δB/B≤5×10?2).  相似文献   

5.
An investigation is made of the self-interaction of whistler waves (whistlers) involving the formation of waveguide channels in a collisional magnetoactive plasma as a result of its additional ionization by the field of the propagating wave. Simplified equations are derived to describe the behavior of the whistler field in a channel of enhanced plasma density in the presence of electron collisions. Self-consistent distributions of the field and the plasma corresponding to steady-state ionization self-channeling of whistlers are obtained by numerically solving the equations for the field together with balance equations for the electron density and energy. Our estimates indicate that this effect can be observed under laboratory conditions. Zh. éksp. Teor. Fiz. 112, 1285–1298 (October 1997)  相似文献   

6.
We study the guided propagation of whistler waves along cylindrical ducts with enhanced density in a collisional magnetoplasma. It is shown that under certain conditions, the presence of comparatively small dissipative losses due to electron collisions in a plasma medium can lead to significant changes in the dispersion characteristics and field structures of whistler modes guided by such ducts compared with the case of a collisionless plasma. We present the results of numerical calculations showing such changes in the properties of whistler modes. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 1, pp. 31–49, January 2008.  相似文献   

7.
We study the guided propagation of whistler waves whose fields depend on the azimuthal angle in cylindrical plasma-waveguide channels (density ducts) aligned with an external magnetic field and surrounded by a uniform magnetoplasma. The main attention is paid to ducts with enhanced plasma density. It is shown that, under certain conditions, such ducts are capable of guiding proper (eigen) modes and improper leaky modes. We present the results of analysis of the dispersion properties and field structures of nonsymmetric modes guided by cylindrical ducts in the whistler frequency range.  相似文献   

8.
It is shown that the drift of plasma across a homogeneous magnetic field causes the generation of a wave electric field which, for waves propagating along the magnetic field in the whistler mode, is in the direction of the magnetic field. This leads to Landau damping of the wave field by the background electron distribution, simultaneously with amplification via the electromagnetic cyclotron instability. The drift velocity of the plasma for zero net growth of a whistler mode signal is calculated. It is suggested that such a process occurs in the equatorial region of the magnetosphere during a geomagnetic storm and accounts for the missing band of emissions at half the equatorial gyrofrequency.  相似文献   

9.
The quantum regime of a plasma‐whistler‐wave‐pumped free‐electron laser (FEL) in the presence of an axial‐guide magnetic field is presented. By quantizing both the plasma whistler field and axial magnetic field, an N‐particle three‐dimensional Hamiltonian of quantum‐FEL (QFEL) has been derived. Employing Heisenberg evolution equations and introducing a new collective operator which controls the vertical motion of electrons, a quantum dispersion relation of the plasma whistler wiggler has been obtained analytically. Numerical results indicate that, by increasing the intrinsic quantum momentum spread and/or increasing the axial magnetic field strength, the bunching and the radiation fields grow exponentially. In addition, a spiking behavior of the spectrum was observed with increasing cyclotron frequency which provides an enormous improvement in the coherence of QFEL radiation even in a limit close‐to‐classical regime, where an overlapping of these spikes is observed. Also, an upper limit of the intrinsic quantum momentum spread which depends on the value of the cyclotron frequency was found.  相似文献   

10.
We study the field structure and dispersion properties of a hybrid eigenmode guided by a nonuniform magnetized plasma waveguide. It is shown that the rotational and quasi-potential waves contribute to the formation of such a mode in the whistler frequency range. Depending on the plasma density, the rotational component of the hybrid mode is determined by either waves with complex transverse wave numbers or whistler waves, or by true surface waves. In the presence of an axial nonuniformity of the plasma in a channel, the transverse field structure of the propagating mode changes, which is stipulated by changes in both the values of transverse wave numbers and their dependence on the radial coordinate. It is found that the spectrum of axial wave numbers of eigenmodes of a plasma waveguide undergoes a pronounced condensation when smoothing the waveguide walls. The damping of the hybrid mode of a nonuniform waveguide due to electron collisions is found and it is shown that collisional losses determine the damping of waves trapped in the waveguide in the experiments on ionization self-channeling of whistler waves. We have found the effect of “displacing” the strong field from the inner core to the background outer region of the waveguide with increasing plasma density on its axis and broadening background region. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 7, pp. 607–617, July 2006.  相似文献   

11.
The dispersion characteristics and the field structure of axisymmetric modes channeled by a high-density plasma inhomogeneity stretching along the external magnetic field are determined in the whistler range. The feasibility of matching a small antenna to the background plasma by means of plasma inhomogeneity is demonstrated theoretically and experimentally.Nizhni Novgorod State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 34, No. 2, pp. 163–172, February, 1991.  相似文献   

12.
A theory of whistler wave leakage from a magnetic field aligned duct with enhanced plasma density is presented. The energy flux from the duct and the corresponding wave attenuation rate are calculated in the WKB approximation. Possible experimental confirmations of the theory are indicated.  相似文献   

13.
In this paper we consider the plasma maser theory of whistler waves in the presence of ion cyclotron waves in a magnetized plasma. In a plasma with low frequency ion cyclotron turbulence and a high frequency test whistler wave, growth of the whistler wave takes place because of the turbulent bremsstrahlung interaction between the resonant electrons and the modulated electric fields. The growth rate of the whistler wave is calculated and the results discussed.  相似文献   

14.
We present the results of our experiments in which the propagation of whistler waves in a plasma with a nonstationary magnetic-field perturbation (B=B0B(t), δB/B0 ≤ 5%) was investigated. The parametric and dispersive phenomena in a variable magnetic field were studied on the unique Krot plasma bench (the plasma column was 4 m in length and 1.5 m in diameter). A periodic field perturbation is shown to lead to an amplitude-frequency modulation of the whistler wave and to fragmentation of the signal into separate frequency-modulated wavepackets followed by their compression. The formation and compression of pulses is attributable to strong whistler group-velocity dispersion near the electron cyclotron frequency (ω ≤ ωH). The results can be used to interpret the spectral shapes of the signals received from the Earth’s magnetosphere and ionosphere in the electron and ion whistler frequency ranges.  相似文献   

15.
The plasma chaotic system is a dissipative dynamical system modeled by a parametric plasma instability arising from the interaction of the whistler and ion acoustic waves with the plasma oscillation near the lower hybrid resonance. The amplitudes of these three oscillations obey a three-dimensional system of ordinary differential equations that exhibits chaos for certain parameter values. Besides the maximal Lyapunov exponent technique, a generalized-competitive-mode (GCM) technique has been proposed to evaluate parameter values associated with chaos. A mechanical analysis has also been proposed to reveal the mechanisms underlying the different dynamical modes including chaos. In a series of comparisons between the GCM analysis and mechanical analysis, chaos for the plasma chaotic system is determined. The mechanism and causes by which the plasma chaotic system produces different dynamical behaviors are interpreted. Furthermore, using the whistler-parameter variation of the Casimir function and Casimir power for the plasma system, the generating mechanisms of the different orbital modes and the different levels of chaos are uncovered.  相似文献   

16.
《Physics letters. A》1998,243(3):151-155
The nonlinear coupling between whistler and ion-acoustic modes in a plasma having bi-Maxwellian distributed electrons is considered. For stationary propagation, the coupled waves lead to a novel nonlinear structure which has a triple-hump profile for the whistler field intensity. In the critical parameter regime (Δ = 3), only supersonic propagation of the coupled modes is allowed. In other regimes, three integrable cases of the coupled mode propagation have been identified.  相似文献   

17.
We present the results of laboratory experiments in which the mechanisms of interaction of electron beams with whistler waves in a magnetoplasma are studied. Different mechanisms of whistler generation during the injection of a modulated electron beam in the plasma are studied, and the mechanism of conversion of the beam kinetic energy to radiation is demonstrated. The processes of whistler wave generation by the modulated beam at the ˇ Cerenkov and Doppler resonances are analyzed in detail. The excitation of whistler waves by means of a nonresonant mechanism of the transition radiation is studied.  相似文献   

18.
The nonlinear generation of shear field and flow in whistler waves is considered. It is shown that a coherent parametric process leads to modulational instability of four waves whistler interaction. Growth rates for the flow/field are compared with published simulation results.  相似文献   

19.
We study experimentally the effect of ionization self-channeling of waves at the whistler frequencies in a nonuniform magnetic field. It is shown that the formed plasma nonuniformity localizes the radiation from a short high-frequency source inside a discharge channel stretched along an external magnetic field. We found a possibility to control the parameters of the formed plasma-wave channel as well as the dispersion characteristics and structure of wave fields in wide limits by varying the magnetic field in a specified spatial region. We propose a method for the formation of a plasma resonator and test this method in the laboratory experiment. The spatial plasma and field distributions in this resonator are similar to those along a geomagnetic field tube of the magnetospheric resonator. We reveal the plasma instability in such a resonator in the vicinity of the frequency of electron bounce oscillations between magnetic mirrors.  相似文献   

20.
This paper contains the plasma maser interaction between high frequency nonresonant whistler R-mode and low frequency resonant ion acoustic mode in a relativistic plasma. It shows that the whistler R-mode grows through the plasma maser interaction between the relativistic electrons and the ion acoustic fluctuation.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号