首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We study the system consisting of a one-dimension waveguide side-coupled to a nonlinear cavity which was doped with a lambda-type atom and investigate the control of photons transport in one-dimension waveguide through manipulating the atom contained in the cavity. Employing the polariton technique, we show that in the single-photon case, the system behaves as a waveguide coupled to a two-level system. By solving the Schr?dinger equation, we show that single photon switch can be achieved by tuning the Rabi frequency of the classical field. In the two-photon case, the system behaves like a waveguide coupled to a cascade three-level system. Two-photon quantum correlation in the position variation can be controlled by adjusting the Rabi frequency.  相似文献   

2.
The nonlocal emitter-waveguide coupling, which gives birth to the so called giant atom, represents a new paradigm in the field of quantum optics and waveguide QED. We investigate the single-photon scattering in a one-dimensional waveguide on a two-level or three-level giant atom. Thanks to the natural interference induced by the back and forth photon transmitted/reflected between the atom-waveguide coupling points, the photon transmission can be dynamically controlled by the periodic phase modulation via adjusting the size of the giant atom. For the two-level giant-atom setup, we demonstrate the energy shift which is dependent on the atomic size. For the driven three-level giant-atom setup, it is of great interest that, the Autler–Townes splitting is dramatically modulated by the giant atom, in which the width of the transmission valleys (reflection range) is tunable in terms of the atomic size. Our investigation will be beneficial to the photon or phonon control in quantum network based on mesoscopical or even macroscopical quantum nodes involving the giant atom.  相似文献   

3.
The coherent control of single-photon emitters as, e.g., single ions or atoms, is a crucial element for mapping quantum information between light and matter. The possibility of generating entanglement between a photon and the emitter system provides an interface between matter-based quantum memories and photonic quantum communication channels, which is the essential resource for quantum repeaters and other future quantum information applications. To generate entangled atom-photon states, in our experiment, we store a single 87Rb atom in an optical dipole trap. The single-atom/single-photon character is confirmed by the observation of photon antibunching in the detected fluorescence light. The spectral properties of single photons emitted by the atom allowed us to determine the mean kinetic energy of the atom corresponding to 105 μK. We describe a single-atom state analysis method which allowed us to characterize the entanglement between the atom and a single photon emitted in the spontaneous decay. We obtain an entanglement fidelity of 89% that clearly shows the high degree of entanglement in our system and potential for further applications in quantum communication.  相似文献   

4.
Debabrata Goswami 《Pramana》2002,59(2):235-242
We show how the use of optimally shaped pulses to guide the time evolution of a system (‘coherent control’) can be an effective approach towards quantum computation logic. We demonstrate this with selective control of decoherence for a multilevel system with a simple linearly chirped pulse. We use a multiphoton density-matrix approach to explore the effects of ultrafast shaped pulses for two-level systems that do not have a single photon resonance, and show that many multiphoton results are surprisingly similar to the single-photon results. Finally, we choose two specific chirped pulses: one that always generates inversion and the other that always generates self-induced transparency to demonstrate an ensemble CNOT gate.  相似文献   

5.
In this work, using the non-Hermitian Hamiltonian method, the transmission of a single photon in a one-dimensional waveguide interacting with the cavity containing an arbitrary number of photons and the two-level artificial atom is studied with allowance for the relaxation of the latter. For transport factors, analytical expressions which explicitly take into account the qubit relaxation parameter have been obtained. The form of the transmission (reflection) coefficient when there is more than one photon in the cavity qualitatively differs from the single-photon cavity and contains the manifestation of the photon blockade effect. The qubit lifetime depends on the number of photons in the cavity.  相似文献   

6.
We study stimulated emission from an excited two-level atom coupled to a waveguide containing an incident single-photon pulse. We show that the strong photon correlation, as induced by the atom, plays a very important role in stimulated emission. Additionally, the temporal duration of the incident photon pulse is shown to have a marked effect on stimulated emission and atomic lifetime.  相似文献   

7.
Quantum routing in a T-bulge-shaped waveguide system coupled with a driven cyclic three-level atom and a twolevel atom is investigated theoretically.By employing the discrete-coordinate scattering method,exact expressions of the transport coefficients along three ports of the waveguide channels are derived.Our results show that bidirectional high transfer-rate single-photon routing between two channels can be effectively implemented,with the help of the effective potential generated by two atoms and the external driving.Moreover,multiple band zero-transmission emerges in the scattering spectra,arising from the quantum interferences among photons scattered by the boundary and the bulged resonators.The proposed system may suggest an efficient duplex router with filtering functions.  相似文献   

8.
The manipulation of individual, mobile quanta is a key goal of quantum communication; to achieve this, nonlinear phenomena in open systems can play a critical role. We show theoretically that a variety of strong quantum nonlinear phenomena occur in a completely open one-dimensional waveguide coupled to an N-type four-level system. We focus on photon blockade and the creation of single-photon states in the absence of a cavity. Many-body bound states appear due to the strong photon-photon correlation mediated by the four-level system. These bound states cause photon blockade, which can generate a sub-Poissonian single-photon source.  相似文献   

9.
International Journal of Theoretical Physics - We investigate the single-photon transport properties in a hybrid waveguide quantum electrodynamics system, in which a one-dimensional waveguide is...  相似文献   

10.
The effect of the interatomic dipole-dipole interaction on the single-photon transmission spectrum is investigated theoretically in the single-mode optical waveguide containing a pair of dipole interaction two-level atoms and the incident photon, respectively. The results show that the interatomic dipole-dipole interaction can induce a remarkable change in the photon-atom on-resonance frequency in the single-photon transmission spectrum compared with the nonexistence of the interatomic dipole-dipole interaction. As a consequence, the original zero transmission probability at the original photon-atom resonant frequency increases to one directly thanks to the appropriately-chosen dipole-dipole interaction strength. Consequently, this characteristic reveals that the interatomic dipole-dipole interaction treated as an important internal physical mechanism can perform as a functional quantum switching to manipulate the photon’s transmission in the optical waveguide. The corresponding interpretations responsible for this phenomenon are presented.  相似文献   

11.
廖文虎  高钦翔  周光辉 《中国物理》2007,16(7):2106-2110
This paper investigates theoretically the electronic structure and transport of a two-level quantum dot irradiated under a strong laser field at low temperatures. Using the method of Keldysh equation of motion for nonequilibrium Green functions, it examines the time-averaged density of states and conductance for the system with photon polarization parallel with and perpendicular to the tunnelling current direction respectively. It is demonstrated that, by analysing some numerical examples, more photon sidebands resonance states and multi- and single-photon transitions are found when diagonal matrix elements dominate the interaction, while the electronic transitions due to multiphoton absorption are more or less suppressed when off-diagonal interaction dominates.  相似文献   

12.
Current quantum cryptography systems are limited by the attenuated coherent pulses they use as light sources: a security loophole is opened up by the possibility of multiple-photon pulses. By replacing the source with a single-photon emitter, transmission rates of secure information can be improved. We have investigated the use of single self-assembled InAs/GaAs quantum dots as such single-photon sources, and have seen a tenfold reduction in the multi-photon probability as compared to Poissonian pulses. An extension of our experiment should also allow for the generation of triggered, polarization-entangled photon pairs. The utility of these light sources is currently limited by the low efficiency with which photons are collected. However, by fabricating an optical microcavity containing a single quantum dot, the spontaneous emission rate into a single mode can be enhanced. Using this method, we have seen 78% coupling of single-dot radiation into a single cavity resonance. The enhanced spontaneous decay should also allow for higher photon pulse rates, up to about 3 GHz. Received 8 July 2001 and Received in final form 25 August 2001  相似文献   

13.
We propose protocols for the entanglement swapping of distant atomic Bose-Einstein condensates using the photon entanglement states as the quantum channel. Two protocols are introduced: one is a single-photon scheme in which an entangled single-photon state serves as the quantum channel, and the other is a multi-photon scheme where an entangled coherent state of the probe lasers is used as the quantum channel.  相似文献   

14.
The properties of a two-level quantum dipole emitter near an ultrathin transdimensional plasmonic film are studied theoretically. The model system studied mimics a solid-state single-photon source device. Using realistic experimental parameters, the spontaneous and stimulated emission intensity profiles are computed as functions of the excitation frequency and film thickness, followed by the analysis of the second-order photon correlations to explore the photon antibunching effect. It is shown that ultrathin transdimensional plasmonic films can greatly improve photon antibunching with thickness reduction, which allows one to control the quantum properties of light and make them more pronounced. Knowledge of these features is advantageous for solid-state single-photon source device engineering and overall for the development of the new integrated quantum photonics material platform based on the transdimensional plasmonic films.  相似文献   

15.
We propose a scheme for the simultaneously preparation radiation-field modes of a single photon and a superposition of zero- and one-photon states, based on the coherent quantum state displacement and photon subtraction from two-mode squeezed state. It is shown that the single-photon and the superposition states can be obtained by only choosing the suitable parameter of displacements. The experimental feasibility to accomplish this scheme is also discussed.  相似文献   

16.
We investigate single-photon scattering grating in a one-dimensional waveguide coupled to a cavity embedded with a driven Λ-type three-level atom. The single-photon reflection amplitude and transmission amplitude in the waveguide are obtained via a real-space approach, respectively. By spatially modulating a classical control field to drive the three-level emitter, alternating regions of high reflection and absorption as well as high transmission and absorption of the single photon are generated in both directions of the waveguide, which acts as a kind of scattering grating. The proposed scheme may have the potential for the design of chip-integrated grating.  相似文献   

17.
The continuous-time quantum walk(CTQW) is the quantum analogue of the continuous-time classical walk and is widely used in universal quantum computations. Here, taking the advantages of the waveguide arrays, we implement large-scale CTQWs on chips. We couple the single-photon source into the middle port of the waveguide arrays and measure the emergent photon number distributions by utilizing the fiber coupling platform. Subsequently, we simulate the photon number distributions of the waveguide arrays by considering the boundary conditions. The boundary conditions are quite necessary in solving the problems of quantum mazes.  相似文献   

18.
姚望  刘仁保  沈吕九 《物理》2006,35(7):537-540
文章简要地介绍了如何在量子网络中控制量子界面动力学以实现静态量子比特和动态量子比特的相互转换.具体言之,该界面由半导体量子点、固体光学微腔以及光学波导管构成,静态及动态比特分别为量子点中的电子自旋和波导管中的单光子波包所携带.界面动力学的控制则是基于对量子点、微腔和波导管耦合系统的量子电动力学的严格求解.据此可实现网络中两个远距离节点间的量子态传输、交换以及确定性的建立量子纠缠等量子操作.上述量子界面亦可用于任意指定波形的单光子源或者单光子探测装置。  相似文献   

19.
20.
We show that two-photon transport is strongly correlated in one-dimensional waveguide coupled to a two-level system. The exact S matrix is constructed using a generalized Bethe-ansatz technique. We show that the scattering eigenstates of this system include a two-photon bound state that passes through the two-level system as a composite single particle. Also, the two-level system can induce effective attractive or repulsive interactions in space for photons. This general procedure can be applied to the Anderson model as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号