首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of Compound I (Cpd I), the active species of the enzyme chloroperoxidase (CPO), was studied using QM/MM calculation. Starting from the substrate complex with hydrogen peroxide, FeIII-HOOH, we examined two alternative mechanisms on the three lowest spin-state surfaces. The calculations showed that the preferred pathway involves heterolytic O-O cleavage that proceeds via the iron hydroperoxide species, i.e., Compound 0 (Cpd 0), on the doublet-state surface. This process is effectively concerted, with a barrier of 12.4 kcal/mol, and is catalyzed by protonation of the distal OH group of Cpd 0. By comparison, the path that involves a direct O-O cleavage from FeIII-HOOH is less favored. A proton coupled electron transfer (PCET) feature was found to play an important role in the mechanism nascent from Cpd 0. Initially, the O-O cleavage progresses in a homolytic sense, but as soon as the proton is transferred to the distal OH, it triggers an electron transfer from the heme-oxo moiety to form water and Cpd I. This study enables us to generalize the mechanisms of O-O activation, elucidated so far by QM/MM calculations, for other heme enzymes, e.g., cytochrome P450cam, horseradish peroxidase (HRP), nitric oxide synthase (NOS), and heme oxygenase (HO). Much like for CPO, in the cases of P450 and HRP, the PCET lowers the barrier below the purely homolytic cleavage alternative (in our case, the homolytic mechanism is calculated directly from FeIII-HOOH). By contrast, the absence of PCET in HO, along with the robust water cluster, prefers a homolytic cleavage mechanism.  相似文献   

2.
In view of recent reports of high reactivity of ferric-superoxide species in heme and nonheme systems (Morokuma et al. J. Am. Chem. Soc. 2010, 132, 11993-12005; Que et al. Inorg. Chem. 2010, 49, 3618-3628; Nam et al. J. Am. Chem. Soc. 2010, 132, 5958-5959; J. Am. Chem. Soc. 2010, 132, 10668-10670), we use herein combined quantum mechanics/molecular mechanics (QM/MM) methods to explore the potential reactivity of P450(cam) ferric-superoxide toward hydroxylation, epoxidation, and sulfoxidation. The calculations demonstrate that P450 ferric-superoxide is a sluggish oxidant compared with the high-valent oxoiron porphyrin cation-radical species. As such, unlike heme enzymes with a histidine axial ligand, the P450 superoxo species does not function as an oxidant in P450(cam). The origin of this different behavior of the superoxo species of P450 vis-a?-vis other heme enzymes like tryptophan 2, 3-dioxygenase (TDO) is traced to the ability of the latter superoxo species to make a stronger FeOO-X (X = H,C) bond and to stabilize the corresponding bond-activation transition states by resonance with charge-transfer configurations. By contrast, the negatively charged thiolate ligand in the P450 superoxo species minimizes the mixing of charge transfer configurations in the transition state and raises the reaction barrier. However, as we demonstrate, an external electric field oriented along the Fe-O axis with a direction pointing from Fe toward O will quench Cpd I formation by slowing the reduction of ferric-superoxide and will simultaneously lower the barriers for oxidation by the latter species, thereby enabling observation of superoxo chemistry in P450. Other options for nascent superoxo reactivity in P450 are discussed.  相似文献   

3.
The primary oxidant of cytochrome P450 enzymes, Compound I, is hard to detect experimentally; in the case of cytochrome P450(cam), this intermediate does not accumulate in solution during the catalytic cycle even at temperatures as low as 200 K (ref 4). Theory can play an important role in characterizing such elusive species. We present here combined quantum mechanical/molecular mechanical (QM/MM) calculations of Compound I of cytochrome P450(cam) in the full enzyme environment as well as density functional studies of the isolated QM region. The calculations assign the ground state of the species, quantify the effect of polarization and hydrogen bonding on its properties, and show that the protein environment and its specific hydrogen bonding to the cysteinate ligand are crucial for sustaining the Fe-S bond and for preventing the full oxidation of the sulfur.  相似文献   

4.
In the catalytic cycle of cytochrome P450cam, after molecular oxygen binds as a ligand to the heme iron atom to yield a ferrous dioxygen complex, there are fast proton transfers that lead to the formation of the active species, Compound I (Cpd I), which are not well understood because they occur so rapidly. In the present work, the conversion of the ferric hydroperoxo complex (Cpd 0) to Cpd I has been investigated by combined quantum-mechanical/molecular-mechanical (QM/MM) calculations. The residues Asp(251) and Glu(366) are considered as proton sources. In mechanism I, a proton is transported to the distal oxygen atom of the hydroperoxo group via a hydrogen bonding network to form protonated Cpd 0 (prot-Cpd0: FeOOH(2)), followed by heterolytic O-O bond cleavage that generates Cpd I and water. Although a local minimum is found for prot-Cpd0 in the Glu(366) channel, it is very high in energy (more than 20 kcal/mol above Cpd 0) and the barriers for its decay are only 3-4 kcal/mol (both toward Cpd 0 and Cpd I). In mechanism II, an initial O-O bond cleavage followed by a concomitant proton and electron transfer yields Cpd I and water. The rate-limiting step in mechanism II is O-O cleavage with a barrier of about 13-14 kcal/mol. According to the QM/MM calculations, the favored low-energy pathway to Cpd I is provided by mechanism II in the Asp(251) channel. Cpd 0 and Cpd I are of similar energies, with a slight preference for Cpd I.  相似文献   

5.
We have investigated C-H hydroxylation of camphor by Compound I (Cpd I) of cytochrome P450cam in different electronic states and by its one-electron reduced and oxidized forms, using QM/MM calculations in the native protein/solvent environment. Cpd I species with five unpaired electrons (pentaradicaloids) are ca. 12 kcal/mol higher in energy than the ground state Cpd I species with three unpaired electrons (triradicaloids). The H-abstraction transition states of pentaradicaloids lie ca. 21 (9) kcal/mol above the triradicaloid (pentaradicaloid) reactants. Hydroxylation via pentaradicaloids is thus facile provided that they can react before relaxing to the ground-state triradicaloids. Excited states of Cpd I with an Fe(V)-oxo moiety lie more than 20 kcal/mol above the triradicaloid ground state in single-point gas-phase calculations, but these electronic configurations are not stable upon including the point-charge protein environment which causes SCF convergence to the triradicaloid ground state. One-electron reduced species (Cpd II) show sluggish reactivity compared with Cpd I in agreement with experimental model studies. One-electron oxidized species are more reactive than Cpd I but seem too high in energy to be accessible. The barriers to hydrogen abstraction for the various forms of Cpd I are generally not affected much by the chosen protonation states of the Asp297 and His355 residues near the propionate side chains of the heme or by the appearance of radical character at Asp297, His355, or the propionates.  相似文献   

6.
A quantum mechanical/molecular mechanical (QM/MM) study of the formation of the elusive active species Compound I (Cpd I) of nitric oxide synthase (NOS) from the oxyferrous intermediate shows that two protons have to be provided to produce a reaction that is reasonably exothermic and that leads to the appearance of a radical on the tetrahydrobiopterin cofactor. Molecular dynamics and energy considerations show that a possible source of proton is the water H-bond chain formed from the surface to the active site, but that a water molecule by itself cannot be the source of the proton; an H3O+ species that is propagated along the chain is more likely. The QM/MM calculations demonstrate that Cpd I and H2O are formed from the ferric-hydrogen peroxide complex in a unique heterolytic O-O cleavage mechanism. The properties of the so-formed Cpd I are compared with those of the known species of chloroperoxidase, and the geometry and spin densities are found to be compatible. The M?ssbauer parameters are calculated and may serve as experimental probes in attempts to characterize NOS Cpd I.  相似文献   

7.
A mutant of P450(cam), in which the cysteine ligand was replaced by selenocysteine, was designed theoretically using hybrid QM/MM (quantum mechanical/molecular mechanical) calculations. The calculations of the active species, Se-CpdI (selenocysteine-Compound I), of the mutant enzyme indicate that Se-Cpd I will be formed faster than the wild-type species and be consumed more slowly in C-H hydroxylation. As such, our calculations suggest that Se-Cpd I can be observed unlike the elusive species of the wild-type enzyme (Denisov, I. G.; Makris, T. M.; Sligar, S. G.; Schlichting, I. Chem. Rev. 2005, 105, 2253-2277). Spectral features of Se-Cpd I were calculated and may assist such eventual characterization. The observation of Se-Cpd I will resolve the major puzzle in the catalytic cycle of a key enzyme in nature.  相似文献   

8.
A precise understanding of the mechanism‐based inactivation of cytochrome P450 enzymes (P450s) at the quantum mechanical level should allow more reliable predictions of drug–drug interactions than those currently available. Hydrazines are among the molecules that act as mechanism‐based inactivators to terminate the function of P450s, which are essential heme enzymes responsible for drug metabolism in the human body. Despite its importance, the mechanism explaining how a metabolic intermediate (MI) is formed from hydrazine is not fully understood. We used density functional theory (DFT) calculations to compare four possible mechanisms underlying the reaction between 1,1‐dimethylhydrazine (or unsymmetrical dimethylhydrazine, UDMH) and the reactive compound I (Cpd I) intermediate of P450. Our DFT calculations provided a clear view on how an aminonitrene‐type MI is formed from UDMH. In the most favorable pathway, hydrogen is spontaneously abstracted from the N2 atom of UDMH by Cpd I, followed by a second hydrogen abstraction from the N2 atom by Cpd II. Nitrogen oxidation of nitrogen atoms and hydrogen abstraction from the C? H bond of the methyl group were found to be less favorable than the hydrogen abstraction from the N? H bond. We also found that the reaction of protonated UDMH with Cpd I is rather sluggish. The aminonitrene‐type MI binds to the ferric heme more strongly than a water molecule. This is consistent with the notion that the catalytic cycle of P450 is impeded when such an MI is produced through the P450‐catalyzed reaction.  相似文献   

9.
Structural and functional roles of the hydrogen bonding network that surrounds the heme-thiolate coordination of P450(cam) from Pseudomonas putida were investigated. A hydrogen bond between the side chain amide of Gln360 and the carbonyl oxygen of the axial Cys357 was removed in Q360L. The side chain hydrogen bond and the electrostatic interaction between the polypeptide amide proton of Gln360 and the sulfur atom of Cys357 were simultaneously removed in Q360P. The increased electron donation of the axial thiolate in Q360L and Q360P was evidenced by negative shifts of their reduction potentials by 45 and 70 mV, respectively. Together with the results on L358P in which the amide proton at position 358 was removed (Yoshioka, S., Takahashi, S., Ishimori, K., Morishima, I. J. Inorg. Biochem. 2000, 81, 141-151), we propose that the side chain hydrogen bond and the electrostatic interaction of the amide proton with the thiolate ligand cause approximately 45 and approximately 35 mV of positive shifts, respectively, of the redox potential of the heme in P450(cam). The resonance Raman spectra of the ferrous-CO form of the Q360 mutants showed a downshifted Fe-CO stretching mode at 482 approximately 483 cm(-)(1) compared with that of wild-type P450(cam) at 484 cm(-)(1). The Q360 mutants also showed the upshift by 4 approximately 5 cm(-)(1) of the Fe-NO stretching mode in the ferrous-NO form. These Raman results indicate the increase in the sigma-electron donation of the thiolate ligand in the reduced state of the Q360 mutants and were in contrast to the increased pi-back-donation of the thiolate in L358P having an upshifted Fe-CO stretching mode at 489 cm(-)(1). The catalytic activities of the Q360 mutants for the unnatural substrates were similar to those of the wild-type enzyme, indicating that the increased sigma-electron donation does not promote the O-O bond heterolysis in the Q360 mutants, although the increased pi-electron donation in L358P promoted the heterolysis of the O-O bond. We conclude that the functions of the proximal hydrogen bonding network in P450(cam) are to stabilize the heme-thiolate coordination, and to regulate the redox potential of the heme iron. Furthermore, we propose that the pi-electron donation, not the sigma-electron donation, of the thiolate ligand promotes the heterolysis of the O-O bond of dioxygen.  相似文献   

10.
The generation of the active species for the enzyme cytochrome P450 by using the highly versatile oxygen surrogate iodosylbenzene (PhIO) often produces different results compared with the native route, in which the active species is generated through O(2) uptake and reduction by NADPH. One of these differences that is addressed here is the deuterium kinetic isotope effect (KIE) jump observed during N-dealkylation of N,N-dimethylaniline (DMA) by P450, when the reaction conditions change from the native to the PhIO route. The paper presents a theoretical analysis targeted to elucidate the mechanism of the reaction of PhIO with heme, to form the high-valent iron-oxo species Compound I (Cpd I), and define the origins of the KIE jump in the reaction of Cpd I with DMA. It is concluded that the likely origin of the KIE jump is the spin-selective chemistry of the enzyme cytochrome P450 under different preparation procedures. In the native route, the reaction proceeds via the doublet spin state of Cpd I and leads to a low KIE value. PhIO, however, diverts the reaction to the quartet spin state of Cpd I, which leads to the observed high KIE values. The KIE jump is reproduced here experimentally for the dealkylation of N,N-dimethyl-4-(methylthio)aniline, by using intra-molecular KIE measurements that avoid kinetic complexities. The effect of PhIO is compared with N,N-dimethylaniline-N-oxide (DMAO), which acts both as the oxygen donor and the substrate and leads to the same KIE values as the native route.  相似文献   

11.
The active site of HRP Compound I (Cpd I) is modeled using hybrid density functional theory (UB3LYP). The effects of neighboring amino acids and of environmental polarity are included. The low-lying states have porphyrin radical cationic species (Por(*)(+)). However, since the Por(*)(+) species is a very good electron acceptor, other species, which can be either the ligand or side chain amino acid residues, may participate in electron donation to the Por(*)(+) moiety, thereby making Cpd I behave like a chemical chameleon. Thus, this behavior that was noted before for Cpd I of P450 is apparently much more wide ranging than initially appreciated. Since chemical chameleonic behavior property was found to be expressed not only in the properties of Cpd I itself, but also in its reactivity, the roots of this phenomenon are generalized. A comparative discussion of Cpd I species follows for the enzymes HRP, CcP, APX, CAT (catalase), and P450.  相似文献   

12.
Density functional theory (DFT) is applied to the dark section of the catalytic cycle of the enzyme cytochrome P450, namely, the formation of the active species, Compound I (Cpd I), from the ferric-hydroperoxide species (Cpd 0) by a protonation-assisted mechanism. The chosen 96-atom model includes the key functionalities deduced from experiment: Asp(251), Thr(252), Glu(366), and the water channels that relay the protons. The DFT model calculations show that (a) Cpd I is not formed spontaneously from Cpd 0 by direct protonation, nor is the process very exothermic. The process is virtually thermoneutral and involves a significant barrier such that formation of Cpd I is not facile on this route. (b) Along the protonation pathway, there exists an intermediate, a protonated Cpd 0, which is a potent oxidant since it is a ferric complex of water oxide. Preliminary quantum mechanical/molecular mechanical calculations confirm that Cpd 0 and Cpd I are of similar energy for the chosen model and that protonated Cpd 0 may exist as an unstable intermediate. The paper also addresses the essential role of Thr(252) as a hydrogen-bond acceptor (in accord with mutation studies of the OH group to OMe).  相似文献   

13.
Cytochrome P450 3A4 is involved in the metabolism of 50% of all swallowed drugs. The enzyme functions by means of a high-valent iron-oxo species, called compound I (Cpd I), which is formed after entrance of the substrate to the active site. We explored the features of Cpd I using hybrid quantum mechanical/molecular mechanical calculations on various models that are either substrate-free or containing one and two molecules of diazepam as a substrate. M?ssbauer parameters of Cpd I were computed. Our major finding shows that without the substrate, Cpd I tends to elongate its Fe-S bond, localize the radical on the sulfur, and form hydrogen bonds with A305 and T309, which may hypothetically lead to Cpd I consumption by H-abstraction. However, the positioning of diazepam close to Cpd I, as enforced by the effector molecule, was found to strengthen the NH...S interactions of the conserved I443 and G444 residues with the proximal cysteinate ligand. These interactions are known to stabilize the Fe-S bond, and as such, the presence of the substrate leads to a shorter Fe-S bond and it prevents the localization of the radical on the sulfur. This diazepam-Cpd I stabilization was manifested in the 1W0E conformer. The effector substrate did not influence Cpd I directly but rather by positioning the active substrate close to Cpd I, thus displacing the hydrogen bonds with A305 and T309, and thereby giving preference to substrate oxidation. It is hypothesized that these effects on Cpd I, promoted by the restrained substrate, may be behind the special metabolic behavior observed in cases of multiple substrate binding (also called cooperative binding). This restraint constitutes a mechanism whereby substrates stabilize Cpd I sufficiently long to affect monooxygenation by P450s at the expense of Cpd I destruction by the protein residues.  相似文献   

14.
In the catalytic cycle of cytochrome P450cam, the hydroperoxo intermediate (Cpd 0) is formed by proton transfer from a reduced oxyheme complex (S5). This process is drastically slowed down when Asp251 is mutated to Asn (D251N). We report quantum mechanical/molecular mechanical (QM/MM) calculations that address this proton delivery in the doublet state through a hydrogen-bond network in the Asp251 channel, both for the wild-type enzyme and the D251N mutant, using four different active-site models. For the wild-type, we find a facile concerted mechanism for proton transfer from protonated Asp251 via Wat901 and Thr252 to the FeOO moiety, with a barrier of about 1 kcal/mol and a high exothermicity of more than 20 kcal/mol. In the D251N mutant with a neutral Asn251 residue, the proton transfer is almost thermoneutral or slightly exothermic in the three models considered. It is still very facile when the Asn251 residue adopts a conformation analogous to Asp251 in the wild-type enzyme, but the barrier increases significantly when the Asn251 side chain flips (as indicated by classical molecular dynamics simulations). This flip disrupts the hydrogen-bond network and hence the proton-transfer pathway, which causes a longer lifetime of S5 in the D251N mutant (consistent with experimental observations). The entry of an additional water molecule into the active site of D251N with flipped Asn251 regenerates the hydrogen-bond network and provides a viable mechanism for proton delivery in the mutant, with a moderate barrier of about 7 kcal/mol.  相似文献   

15.
Density functional calculations were performed in response to the controversies regarding the identity of the oxidant species in cytochrome P450. The calculations were used to gauge the relative C-H hydroxylation reactivity of three potential oxidant species of the enzyme, the high-valent oxo-iron species Compound I (Cpd I), the ferric hydroperoxide Compound 0 (Cpd 0), and the ferric-hydrogen peroxide complex Fe(H(2)O(2)). The results for the hydroxylation of a radical probe substrate, 1, show the following trends: (a) Cpd I is the most reactive species; in its presence the other two reagents will be silent. (b) In the absence of Cpd I, substrate oxidation by Cpd 0 and Fe(H(2)O(2)) will take place via a stepwise mechanism that involves initial O-O homolysis followed by H-abstraction from 1. (c) Cpd 0 will undergo mostly porphyrin hydroxylation and only approximately 15% of substrate oxidation producing mostly the rearranged alcohol, 3 (Scheme 2). (d) Fe(H(2)O(2)) will generate mostly free hydrogen peroxide (uncoupling). A small fraction will perform substrate oxidation and lead mostly to 3. Reactivity probes for these reagents are kinetic isotope effect (KIE) and the product ratio of unrearranged to rearranged alcohols, [2/3]. Thus, for substrate oxidation by Cpd 0 or Fe(H(2)O(2)) KIE will be small, approximately 2, while Cpd I will have large KIE values. Typically both Cpd 0 and Fe(H(2)O(2)) will lead to a [2/3] ratio < 1, while Cpd I will lead to ratios > 1. In addition, the product isotope effect (KIE(2)/KIE(3) not equal 1) is expected from the reactivity of Cpd I.  相似文献   

16.
Cytochrome P450 enzymes are an important family of biocatalysts that oxidize chemically inert C?H bonds. There are many unresolved questions regarding the catalytic reaction intermediates, in particular P450 Compound I (Cpd‐I) and II (Cpd‐II). By using simple molecular models, we simulate various X‐ray spectroscopy signals, including X‐ray absorption near‐edge structure (XANES), resonant inelastic X‐ray scattering (RIXS), and stimulated X‐ray Raman spectroscopy (SXRS) of the low‐ and high‐spin states of Cpd‐I and II. Characteristic peak patterns are presented and connected to the corresponding electronic structures. These X‐ray spectroscopy techniques are complementary to more conventional infrared and optical spectroscopy and they help to elucidate the evolving electronic structures of transient species along the reaction path.  相似文献   

17.
Molecular mechanics (MM) methods are computationally affordable tools for screening chemical libraries of novel compounds for sites of P450 metabolism. One challenge for MM methods has been the absence of a consistent and transferable set of parameters for the heme within the P450 active site. Experimental data indicate that mammalian P450 enzymes vary greatly in the size, architecture, and plasticity of their active sites. Thus, obtaining X-ray-based geometries for the development of accurate MM parameters for the major classes of hepatic P450 remains a daunting task. Our previous work with preliminary gas-phase quantum mechanics (QM)-derived atomic partial charges greatly improved the accuracy of docking studies of raloxifene to CYP3A4. We have therefore developed and tested a consistent set of transferable MM parameters based on gas-phase QM calculations of two model systems of the heme-a truncated (T-HM) and a full (F-HM) for four states of the P450 catalytic cycle. Our results indicate that the use of the atomic partial charges from the F-HM further improves the accuracy of docked predictions for raloxifene to CYP3A4. Different patterns for substrate docking are also observed depending on the choice of heme model and state. Newly parameterized heme models are tested in implicit and explicitly solvated MD simulations in the absence and presence of enzyme structures, for CYP3A4, and appear to be stable on the nanosecond simulation timescale. The new force field for the various heme states may aid the community for simulations of P450 enzymes and other heme-containing enzymes.  相似文献   

18.
Dopamine can be generated from tyramine via arene hydroxylation catalyzed by a cytochrome P450 enzyme (CYP2D6). Our quantum mechanical/molecular mechanical (QM/MM) results reveal the decisive impact of the protein in selecting the 'best' reaction mechanism. Instead of the traditional Meisenheimer-complex mechanism, the study reveals a mechanism involving an initial hydrogen atom transfer from the phenolic hydroxyl group of the tyramine to the iron-oxo of the compound I (Cpd I), followed by a ring-π radical rebound that eventually leads to dopamine by keto-enol rearrangement. This mechanism is not viable in the gas phase since the O-H bond activation by Cpd I is endothermic and the process does not form a stable intermediate. By contrast, the in-protein reaction has a low barrier and is exothermic. It is shown that the local electric field of the protein environment serves as a template that stabilizes the intermediate of the H-abstraction step and thereby mediates the catalysis of dopamine formation at a lower energy cost. Furthermore, it is shown that external electric fields can either catalyze or inhibit the process depending on their directionality.  相似文献   

19.
The hydrogen abstraction reaction of camphor in cytochrome P450(cam) has been investigated in the native enzyme environment by combined quantum mechanical/molecular mechanical (QM/MM) calculations and in the gas phase by density functional calculations. This work has been motivated by contradictory published QM/MM results. In an attempt to pinpoint the origin of these discrepancies, we have systematically studied the factors that may affect the computed barriers, including the QM/MM setup, the optimization procedures, and the choice of QM region, basis set, and protonation states. It is found that the ChemShell and QSite programs used in the published QM/MM calculations yield similar results at given geometries, and that the discrepancies mainly arise from two technical issues (optimization protocols and initial system preparation) that need to be well controlled in QM/MM work. In the course of these systematic investigations, new mechanistic insights have been gained. The crystallographic water 903 placed near the oxo atom of Compound I lowers the hydrogen abstraction barrier by ca. 4 kcal/mol, and thus acts as a catalyst for this reaction. Spin density may appear at the A-propionate side chain of the heme if the carboxylate group is not properly screened, which might be expected to happen during protein dynamics, but not in static equilibrium situations. There is no clear correlation between the computed A-propionate spin density and the hydrogen abstraction barrier, and hence, no support for a previously proposed side-chain mediated transition state stabilization mechanism. Standard QM/MM optimizations yield an A-propionate environment close to the X-ray structure only for protonated Asp297, and not for deprotonated Asp297, but the computed barriers are similar in both cases. An X-ray like A-propionate environment can also be obtained when deprotonated Asp297 is included in the QM region and His355 is singly protonated, but this Compound II-type species with a closed-shell porphyrin ring has a higher hydrogen abstraction barrier and should thus not be mechanistically relevant.  相似文献   

20.
Cytochrome P450 (CYP) heme-thiolate monooxygenases catalyze the hydroxylation of the C−H bonds of organic molecules. This reaction is initiated by a ferryl-oxo heme radical cation (Cpd I). These enzymes can also catalyze sulfoxidation reactions and the ferric-hydroperoxy complex (Cpd 0) and the Fe(III)-H2O2 complex have been proposed as alternative oxidants for this transformation. To investigate this, the oxidation of 4-alkylthiobenzoic acids and 4-methoxybenzoic acid by the CYP199A4 enzyme from Rhodopseudomonas palustris HaA2 was compared using both monooxygenase and peroxygenase pathways. By examining mutants at the mechanistically important, conserved acid alcohol-pair (D251N, T252A and T252E) the relative amounts of the reactive intermediates that would form in these reactions were disturbed. Substrate binding and X-ray crystal structures helped to understand changes in the activity and enabled an attempt to evaluate whether multiple oxidants can participate in these reactions. In peroxygenase reactions the T252E mutant had higher activity towards sulfoxidation than O-demethylation but in the monooxygenase reactions with the WT enzyme the activity of both reactions was similar. The peroxygenase activity of the T252A mutant was greater for sulfoxidation reactions than the WT enzyme, which is the reverse of the activity changes observed for O-demethylation. The monooxygenase activity and coupling efficiency of sulfoxidation and oxidative demethylation were reduced by similar degrees with the T252A mutant. These observations infer that while Cpd I is required for O-dealkylation, another oxidant may contribute to sulfoxidation. Based on the activity of the CYP199A4 mutants it is proposed that this is the Fe(III)-H2O2 complex which would be more abundant in the peroxide-driven reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号