首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate local manipulation and detection of nuclear spin coherence in semiconductor quantum wells by an optical pump-probe technique combined with pulse rf NMR. The Larmor precession of photoexcited electron spins is monitored by time-resolved Kerr rotation (TRKR) as a measure of nuclear magnetic field. Under the irradiation of resonant pulsed rf magnetic fields, Rabi oscillations of nuclear spins are traced by TRKR signals. The intrinsic coherence time evaluated by a spin-echo technique reveals the dependence on the orientation of the magnetic field with respect to the crystalline axis as expected by the nearest neighbor dipole-dipole interaction.  相似文献   

2.
李爱仙  段素青  张伟 《中国物理 B》2016,25(10):108506-108506
Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot(QD) by the coherent population trapping(CPT) and the electric dipole spin resonance(EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip–flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time.  相似文献   

3.
We demonstrate the electrical detection of pulsed X-band electron nuclear double resonance (ENDOR) in phosphorus-doped silicon at 5 K. A pulse sequence analogous to Davies ENDOR in conventional electron spin resonance is used to measure the nuclear spin transition frequencies of the (31)P nuclear spins, where the (31)P electron spins are detected electrically via spin-dependent transitions through Si/SiO(2) interface states, thus not relying on a polarization of the electron spin system. In addition, the electrical detection of coherent nuclear spin oscillations is shown, demonstrating the feasibility to electrically read out the spin states of possible nuclear spin qubits.  相似文献   

4.
A study was made of the effect of an rf field on spin diffusion. The interaction of spins with the rf field is described quantum mechanically. It is shown that the effect of the rf field on the system of spins can, in some approximation, be interpreted as the effect of a change in the Larmor frequency of the spin and a decrease in the magnitude of the dipole-dipole interaction between spins. These conclusions were obtained on the basis of a unitary transformation which eliminates the explicit form of the spin-photon interaction operator in the Hamiltonian of the system considered. An expression is derived for the spin-diffusion coefficient under saturation. The presence of the rf field results in a decrease in the diffusion coefficient.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 7–11, September, 1979.  相似文献   

5.
The dynamics of optically detected nuclear magnetic resonance is studied in n-GaAs via time-resolved Kerr rotation using an on-chip microcoil for rf field generation. Both optically allowed and optically forbidden NMR are observed with a dynamics controlled by the interplay between dynamic nuclear polarization via hyperfine interaction with optically generated spin-polarized electrons and nuclear spin depolarization due to magnetic resonance absorption. Comparing the characteristic nuclear spin relaxation rate obtained in experiment with master equation simulations, the underlying nuclear spin depolarization mechanism for each resonance is extracted.  相似文献   

6.
A. Henstra 《Molecular physics》2013,111(7):859-871
Nuclear orientation via electron spin locking (NOVEL) is a technique to orient nuclear spins embedded in a solid. Like other methods of dynamic nuclear polarization (DNP) it employs a small amount of unpaired electron spins and uses a microwave field to transfer the polarization of these unpaired electron spins to the nuclear spins. Traditional DNP uses CW microwave fields, but NOVEL uses pulsed electron spin resonance (ESR) techniques: a 90 degree pulse–90 degree phase shift–locking pulse sequence is applied and during the locking pulse the polarization transfer is assured by satisfying the Hartmann–Hahn condition. The transfer is coherent and similar to coherence transfer between nuclear spins. However, NOVEL requires an extension of the existing theory to many, inequivalent nuclear spins and to arbitrary, i.e. high electron and nuclear spin polarization. In this paper both extensions are presented. The theory is applied to the system naphthalene doped with pentacene, where the proton spins are polarized using the photo-excited triplet states of the pentacene molecules and found to show excellent agreement with the experimentally observed evolution of the polarization transfer during the locking pulse.  相似文献   

7.
The possibilities of resonance excitation of nuclear spins by an alternating electric field (nuclear magnetoelectric resonance) in the Mn2Sb ferromagnet are analyzed as applied to the studying of magnetoelectric effects in this compound.  相似文献   

8.
We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot under optical excitation and photon detection. At the two-photon resonance between the two electron-spin states, the detection of light scattering from the intermediate exciton state acts as a weak quantum measurement of the effective magnetic (Overhauser) field due to the nuclear spins. In a coherent population trapping state without light scattering, the nuclear state is projected into an eigenstate of the Overhauser field operator, and electron decoherence due to nuclear spins is suppressed: We show that this limit can be approached by adapting the driving frequencies when a photon is detected. We use a Lindblad equation to describe the driven system under photon emission and detection. Numerically, we find an increase of the electron coherence time from 5 to 500 ns after a preparation time of 10 micros.  相似文献   

9.
Nuclear spin qubits have the longest coherence times in the solid state, but their quantum readout and initialization is a great challenge. We present a theory for the interaction of an electric current with the nuclear spins of donor impurities in semiconductors. The theory yields a sensitivity criterion for quantum detection of nuclear spin states using electrically detected magnetic resonance, as well as an all-electrical method for fast nuclear spin qubit initialization.  相似文献   

10.
We study a scheme for electrical detection of the spin resonance of a single-electron trapped near a field effect transistor (FET) conduction channel. In this scheme, the resonant Rabi oscillations of the trapped electron spin cause a modification of the average charge of a shallow trap, which can be detected through the change in the FET channel resistivity. We show that the dependence of the channel resistivity on the frequency of the rf field can have either peak or dip at the Larmor frequency of the electron spin in the trap.  相似文献   

11.
We report on measurements of the spin lifetime of nuclear spins strongly coupled to a micromechanical cantilever as used in magnetic resonance force microscopy. We find that the rotating-frame correlation time of the statistical nuclear polarization is set by the magnetomechanical noise originating from the thermal motion of the cantilever. Evidence is based on the effect of three parameters: (1) the magnetic field gradient (the coupling strength), (2) the Rabi frequency of the spins (the transition energy), and (3) the temperature of the low-frequency mechanical modes. Experimental results are compared to relaxation rates calculated from the spectral density of the magnetomechanical noise.  相似文献   

12.
An investigation based on the coupled Maxwell-Bloch equations for a system of equivalent exchange-coupled spins is performed in order to explain a number of features of NMR spectra obtained in metals by Fourier-transforming of the free-induction decay at ultralow temperatures. Small angles of tilting of the nuclear magnetization by the exciting rf field are considered. It is shown that the free precession inherits the nonuniformity in the distribution of the rf field and the magnetization produced at the excitation stage inside the sample on account of the skin effect. As a result, the NMR spectrum is found to consist of a set of peaks—signals due to standing spin waves. However, such a spectrum can be observed only when the detuning of the exciting rf field is sufficiently large relative to the Larmor frequency of the spins. Otherwise, the rf field does not penetrate into the sample because of strong absorption by the spins. If the detuning is large, the dispersion signal and part of the NMR absorption signal are proportional to the equilibrium magnetization to the power 3/2. Such behavior is expected at low temperatures so that the coupling of the magnetization with the rf field is strong. The results obtained qualitatively explain the experimentally observed characteristics of the NMR spectra: the presence of kinks and structure of the NMR lines, the dependence of the shape and intensity of the spectrum on the detuning of the exciting rf field, and the nonlinear dependence of the nuclear susceptibility on the reciprocal of the sample temperature. Zh. éksp. Teor. Fiz. 114, 1836–1847 (November 1998)  相似文献   

13.
The application of nuclear quadrupole resonance (NQR) to the detection of materials can be hampered by the low sensitivity of the technique. The use of surface coils for remote detection only exacerbates this problem. In this paper we demonstrate the advantages of adiabatic half passage (AHP) for NQR detection ofI=1 spins in powder samples. Under optimal conditions, AHP provides a 15% sensitivity enhancement over traditional optimized, pulsed excitation. AHP excitation is independent of ω1 over more than an order of magnitude variation in radio-frequency (rf) field strength, and can provide up to a factor of two or more sensitivity enhancement over traditional pulsed excitation in inhomogeneous rf magnetic fields. In pulsed spin-locking-type experiments, AHP as a prepulse can provide near constant signal amplitude over a factor of two variation in rf magnetic field strength.  相似文献   

14.
The possibility of self-polarization of nuclear spins predicted by M.I. D’yakonov and V.I. Perel’ (JETP Lett. 16, 398 (1972)) has been investigated in the case of the electric current passing through a single quantum dot. The mechanisms of nuclear spin relaxation in the quantum dot leading to the polarization and depolarization of the nuclei are discussed. To make the nuclear polarization possible, it has been proposed to increase the nuclear polarization rate via the interaction of an electron localized in the quantum dot with electromagnetic oscillations in an electric circuit, whose proper frequency is tuned to a resonance with the Zeeman splitting of an electron level in the quantum dot.  相似文献   

15.
The Chao matrix formalism allows analytic calculations of a beam's polarization behavior inside a spin resonance. We recently tested its prediction of polarization oscillations occurring in a stored beam of polarized particles near a spin resonance. Using a 1.85 GeV/c polarized deuteron beam stored in the COoler SYnchrotron, we swept a new rf solenoid's frequency rather rapidly through 400 Hz during 100 ms, while varying the distance between the sweep's end frequency and the central frequency of an rf-induced spin resonance. Our measurements of the deuteron's polarization near and inside the resonance agree with the Chao formalism's predicted oscillations.  相似文献   

16.
The possibility of stabilizing effects that an rf electric field imposes on drift instabilities in an inhomogeneous plasma is investigated. A two-species, nonisothermal plasma, situated in an externally applied static magnetic field is considered with the rf electric field applied in the same direction as the dc magnetic field. The plasma is "mildly" inhomogeneous in density, with a density gradient perpendicular to the confining magnetic field. Using a hydrodynamic model for the plasma it is found that under certain conditions an increase in the frequency of the drift oscillations is obtained as the result of the application of the rf electric field. The increase in the frequency of the drift oscillations results in an increase in the magnitude of the stabilizing term associated with Landau damping which in turn yields a smaller growth rate for the drift instability. Discussions of the state of the plasma for different values of the frequency of the applied electric field are presented and the feasible ranges of values of the above quantity required for stabilization are determined. It is concluded that the resulting stabilization is significant only in a very narrow rf band. Therefore, the application of this technique appears to be a difficult experimental undertaking.  相似文献   

17.
Dynamic effects caused by the magnetoelectric and antiferroelectric interactions in tetragonal antiferromagnets are studied. The analysis is based on the example of trirutiles that are a series of antiferromagnets with different exchange structures and orientation states. We are mainly dealing with the excitation by an alternating electric field E(t) of spin waves typical of these magnets (antiferroelectric resonance) and the nuclear magnetoelectric resonance connected with these interactions. In the first case, special emphasis is placed on specific magnons (antimagnons), where only the antiferromagnetism vectors L take part in oscillations, whereas the total ferromagnetism vector M remains unchanged. The nuclear magnetoelectric resonance can be generated by oscillations of both L and M caused by field E(t). In this way, the field contributes to the hyperfine field, which acts on the nuclear spins. It is shown that the magnetic and antiferroelectric interactions in the dynamics can manifest themselves both at high (usually, exchange) frequencies ωwE (antiferroelectric resonance) and at rather low nuclear frequencies of ωnE. Particular cases of magnetic structures (phases) are considered where field E(t) can excite not only antimagnons, but also quasiantiferromagnons that have lower eigenfrequencies than those of quasimagnons (relativistic and semirelativistic).  相似文献   

18.
The spin temperature hypothesis is extended to a system of nuclear spins with internal magnetic dipolar interactions and subject to periodic external perturbation in the form of intense radiofrequency pulses. Preliminary results are described for the case of phase-alternated irradiation at resonance.  相似文献   

19.
An all-electrical spin resonance effect in a GaAs few-electron double quantum dot is investigated experimentally and theoretically. The magnetic field dependence and absence of associated Rabi oscillations are consistent with a novel hyperfine mechanism. The resonant frequency is sensitive to the instantaneous hyperfine effective field, and the effect can be used to detect and create sizable nuclear polarizations. A device incorporating a micromagnet exhibits a magnetic field difference between dots, allowing electrons in either dot to be addressed selectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号