首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A three-dimensional, incompressible, multiphase particle-in-cell method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to an Eulerian grid and then mapping back computed stress tensors to particle positions. A subgrid particle, normal stress model for discrete particles which is robust and eliminates the need for an implicit calculation of the particle normal stress on the grid is presented. Interpolation operators and their properties are defined which provide compact support, are conservative, and provide fast solution for a large particle population. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. Particles are implicitly coupled to the fluid phase, and the fluid momentum and pressure equations are implicitly solved, which gives a robust solution.  相似文献   

2.
The present note deals with the effects of radiative heat transfer and free convection in MHD for a flow of an electrically conducting, incompressible, dusty viscous fluid past an impulsively started vertical non-conducting plate, under the influence of transversely applied magnetic field. The heat due to viscous dissipation and induced magnetic field is assumed to be negligible. The governing linear partial differential equations are solved by finite difference technique. The effects of various parameters (like radiation parameter N, Prandtl number Pr, porosity parameter K) entering into the MHD Stokes problem for flow of dusty conducting fluid have been examined on the temperature field and velocity profile for both the dusty fluid and dust particles.  相似文献   

3.
《Physica A》2006,371(2):195-208
The unsteady hydromagnetic Couette flow and heat transfer between two parallel porous plates is studied with the Hall effect and temperature dependent properties. The fluid is acted upon by a constant pressure gradient and an external uniform magnetic field as well as uniform suction and injection applied perpendicular to the parallel plates. A numerical solution for the governing non-linear equations of motion and the energy equation are obtained. The effect of the Hall term and the temperature-dependent viscosity and thermal conductivity on both velocity and temperature distributions is examined.  相似文献   

4.
This article investigates the natural convection flow of viscous incompressible fluid in a channel formed by two infinite vertical parallel plates. Fully developed laminar flow is considered in a vertical channel with steady-periodic temperature regime on the boundaries. The effect of internal heating by viscous dissipation is taken into consideration. Separating the velocity and temperature fields into steady and periodic parts, the resulting second order ordinary differential equations are solved to obtain the expressions for velocity, and temperature. The amplitudes and phases of temperature and velocity are also obtained as well as the rate of heat transfer and the skin friction on the plates. In presence of viscous dissipation, fluids of relatively small Prandtl number has higher temperature than the channel plates and as such, heat is being transferred from the fluid to the plate.  相似文献   

5.
Models for the dynamics of a dust-like medium in the self-gravity field are investigated. Solutions of the corresponding problems are constructed by the method of hydrodynamic substitutions generalizing the Cole–Hopf substitutions. The method is extended to multidimensional ideal and viscous fluid flows with cylindrical and spherical symmetries for which exact solutions are constructed. Solutions for the dynamics of self-gravitating dust with arbitrary initial distributions of both fluid density and velocity are constructed using special coordinate transformations. In particular, the problem of cosmological expansion is considered in terms of Newton’s gravity theory. Models of a one-dimensional viscous dust fluid flow and some problems of gas hydrodynamics are considered. Examples of exact solutions and their brief analysis are provided.  相似文献   

6.
Two charged dust particles inside a cloud of charges are considered as Debye atoms forming a Debye molecule. Cassini coordinates are used for the numerical solution of the Poisson-Boltzmann equation for the charged cloud. The electric force acting on a dust particle by the other dust particle was determined by integrating the electrostatic pressure on the surface of the dust particle. It is shown that attractive forces appear when the following two conditions are satisfied. First, the average distance between dust particles should be approximately equal to two Debye radii. Second, attraction takes place when similar charges are concentrated predominantly on the dust particles. If the particles carry a small fraction of total charge of the same polarity, repulsion between the particles takes place at all distances. We apply our results to the experiments with thermoemission plasma and to the experiments with nuclear-pumped plasma.  相似文献   

7.
剪切流动条件下液滴变形和断裂的数值模拟   总被引:3,自引:0,他引:3  
本文采用扩散界面法研究了剪切流动条件下悬浮液滴变形和断裂的动力学机制。控制方程采用考虑表面张力影响的Navier-Stokes-Cahn-Hilliard方程描述。计算网格采用均匀矩形交错网格。采用基于压力增量的近似投影法计算 Navier-Stokes方程,采用完全近似多重网格法计算Cahn-Hilliard方程。稳态液滴变形规律及液滴拉伸断裂过程的计算结果与试验结果符合较好,表明本文模型能够很好的研究液滴变形及断裂机理。  相似文献   

8.
The problem of flow and heat transfer of an electrically conducting viscoelastic fluid over a continuously stretching sheet in the presence of a uniform magnetic field is analyzed for the case of power-law variation in the sheet temperature. The fluid viscosity and thermal conductivity are assumed to vary as a function of temperature. The basic equations comprising the balance laws of mass, linear momentum, and energy modified to include the electromagnetic force effect, the viscous dissipation, internal heat generation or absorption and work due to deformation are solved numerically.  相似文献   

9.
An analytical method, based on the transformation of cylindrical wave functions, is presented for calculating the free transverse vibrations of uniform circular plates and membranes with eccentric holes. The wave equations governing the small transverse motion of the plates and membranes are solved exactly to satisfy the boundary conditions at both inner and outer edges, and the associated frequency equations for the plates and membranes are derived. The analysis also includes the vibrations of uniform circular plates and membranes with concentric holes as special cases. Numerical examples are presented to show the dependence of the eigenfrequency on the eccentricity and on the ratio of the inner radius to outer radius. The main purpose of the paper is to illustrate that an exact, analytical solution of the vibrations of eccentric annular plates and membranes can be obtained.  相似文献   

10.
11.
The second-order time-averaged acoustics of a viscous, thermally conducting gas between closely spaced parallel plates is studied. The acoustic disturbance is studied by expanding the equations of fluid dynamics and heat transfer to second order in Mach number. The undisturbed state is allowed to have a nonzero temperature gradient. A set of coupled equations for the time-averaged pressure gradient, velocity, and temperature are obtained and solved. Particular attention is paid to the relation between the time-averaged mass flux and pressure gradient. An explicit expression is obtained relating the time-averaged pressure drop across a thermoacoustic stack to the time-averaged mass flux through the stack.  相似文献   

12.
In this paper we study the interaction of a viscous fluid with an elastic solid. Of particular interest are the eigenmodes of the coupled system. Starting from the Navier-Stokes equations for the fluid and the linear elasticity equations for the solid, we derive the linear equations governing the motion of the system. It is shown how a variational formulation of the problem may be obtained by re-scaling the displacement unknowns. The finite-element technique is then used to discretize the equations. The resulting quadratic eigenvalue problem is solved by means of an inverse iteration procedure.  相似文献   

13.
The objective of the present work is to investigate theoretically the Hiemenz flow and heat transfer of an incompressible viscous nanofluid past a porous wedge sheet in the presence of suction/injection due to solar energy (incident radiation). The wall of the wedge is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or injection and has a power-law variation of the wall temperature. The partial differential equations governing the problem under consideration are transformed by a special form of Lie symmetry group transformations viz. one-parameter group of transformation into a system of ordinary differential equations, which are solved numerically using Runge-Kutta-Gill based shooting method. The conclusion is drawn that the flow field and temperature are significantly influenced by thermal radiation, nanoparticle volume fraction, and porosity of the sheet.  相似文献   

14.
Dust poses a serious threat to tokamak operation and safety. It is important to study the behaviour of dust grains under tokamak's discharge conditions, which depends heavily on their size and charge. Existing simulations mainly address issues on dust grains with radii larger than 1 μm, in which case, the drift effect due to electromagnetic fields can be safely ignored. For nanometer scale dust grains, however, the drift effect becomes significant and a new model based on guiding-centre system needs to be established. In this work, the NDS has been done under BOUT++ framework. The simulation contains two parts. Part one, NDS evaluates the charging and ablation processes of the dust grains. In the second part, the guiding-centre orbits of dust particles are tracked in tokamak plasmas, whose parameters are obtained from BOUT++, a highly desirable C++ code package for performing parallel plasma fluid simulations with an arbitrary number of equations in 3D curvilinear coordinates. The orbit of nanodust dynamics is described by guiding centre equations for simplicity, and these equations are numerically solved by conventional fourth-order Runge Kutta method. Simulations provide results such as trajectories and evolutions of dust particles with different sizes and velocities for different tokamak geometries. Results show tungsten dust grains with a radius of a few nanometers launched from outer midplane will oscillate before totally ablated in C-Mod. The oscillation in this case is driven by the ion drag force. Larger Nanodust with a radius of 100 nm, on the contrary, cannot be completely constrained by the electromagnetic field. The high plasma temperature and density in the seperatrix region causes severe dust ablation, resulting in total ablation within several ms.  相似文献   

15.
The linearized equations of viscous fluid flow are used to analyze the diffraction of a time-harmonic acoustic plane wave by a circular aperture in a rigid plane screen. Arbitrary aperture size and arbitrary angle of incidence are considered. Sets of dual integral equations are derived for the diffracted velocity and pressure fields, and are solved by analytic reduction to sets of linear algebraic equations. In the case of normal incidence, numerical results are presented for the fluid velocity in the aperture and the power absorption due to viscous dissipation. The theoretical results for power absorption are compared to previously obtained results from high amplitude acoustic experiments in air. The conditions under which the dissipation predicted by linear theory becomes significantare quantified in terms of the fluid viscosity and sound speed, the acoustic frequency, and the aperture radius.  相似文献   

16.
An analysis is performed to study the influence of local thermal non-equilibrium (LTNE) on unsteady MHD laminar boundary layer flow of viscous, incompressible fluid over a vertical stretching plate embedded in a sparsely packed porous medium in the presence of heat generation/absorption. The flow in the porous medium is governed by Brinkman-Forchheimer extended Darcy model. A uniform heat source or sink is presented in the solid phase. By applying similarity analysis, the governing partial differential equations are transformed into a set of time dependent non-linear coupled ordinary differential equations and they are solved numerically by Runge-Kutta Fehlberg method along with shooting technique. The obtained results are displayed graphically to illustrate the influence of different physical parameters on the velocity, temperature profile and heat transfer rate for both fluid and solid phases. Moreover, the numerical results obtained in this study are compared with the existing literature in the case of LTE and found that they are in good agreement.  相似文献   

17.
We consider the diffraction of a time-harmonic acoustic plane wave by a rigid half-plane in a viscous fluid medium. The linearized equations of viscous fluid flow and the no-slip condition on the half-plane are used to derive a pair of disjoint Wiener-Hopf equations for the fluid stresses and velocities. The Wiener-Hopf equations are solved in conjunction with a requirement that the stresses are integrable near the edge of the half-plane. Specific wave components of the scattered velocity field are given analytically. A Padé approximation to the Wiener-Hopf kernel function is used to derive numerical results that show the effect of viscosity on the velocity field in the immediate vicinity of the edge of the half-plane.  相似文献   

18.
The (2+1)-dimensional Einstein equations are solved exactly for a viscous fluid with both rotation and expansion. The thermodynamic relations are investigated and relevant physical quantities, including coefficients of viscosity and thermal conductivity, are shown to be physically reasonable for a range of coordinate values corresponding to an interior fluid solution. This range of coordinates must be restricted further if closed timelike curves are to be excluded.  相似文献   

19.
This paper presents a numerical method directed towards the simulation of flows with mass transfer due to changes of phase. We use a volume of fluid (VOF) based interface tracking method in conjunction with a mass transfer model and a model for surface tension. The bulk fluids are viscous, conducting, and incompressible. A one-dimensional test problem is developed with the feature that a thin thermal layer propagates with the moving phase interface. This test problem isolates the ability of a method to accurately calculate the thermal layers responsible for driving the mass transfer in boiling flows. The numerical method is tested on this problem and then is used in simulations of horizontal film boiling.  相似文献   

20.
The unsteady laminar flow of an electrically conducting viscous fluid between parallel insulating plates subject to a transverse magnetic field is considered. The plates are fixed and flow is due to a constant pressure gradient. The induced field is taken into account. The fluid is incompressible and of couple stress type. The defining equations are coupled and numerical solutions for different values of couple stress parameter are obtained. The velocity and induced magnetic field profiles are sketched as functions of time, Hartmann number, and magnetic Prandtl number. The velocity decreases with increase in couple stress parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号