首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review our recent theoretical advances in phase transition of cold atoms in optical lattices, such as triangular lattice, honeycomb lattice, and Kagomé lattice. By employing the new developed numerical methods called dynamical cluster approximation and cellular dynamical mean-field theory, the properties in different phases of cold atoms in optical lattices are studied, such as density of states, Fermi surface and double occupancy. On triangular lattice, a reentrant behavior of phase translation line between Fermi liquid state and pseudogap state is found due to the Kondo effect. We find the system undergoes a second order Mott transition from a metallic state into a Mott insulator state on honeycomb lattice and triangular Kagomé lattice. The stability of quantum spin Hall phase towards interaction on honeycomb lattice with spin-orbital coupling is systematically discussed. And we investigate the transition from quantum spin Hall insulator to normal insulator in Kagomé lattice which includes a nearest-neighbor intrinsic spin-orbit coupling and a trimerized Hamiltonian. In addition, we propose the experimental protocols to observe these phase transition of cold atoms in optical lattices.  相似文献   

2.
The spin Hall effect in a two-dimensional electron system on honeycomb lattice with both intrinsic and Rashba spin-orbit couplings is studied numerically. Integer quantized spin Hall conductance is obtained at the zero Rashba coupling limit when electron Fermi energy lies in the energy gap created by the intrinsic spin-orbit coupling, in agreement with recent theoretical prediction. While nonzero Rashba coupling destroys electron spin conservation, the spin Hall conductance is found to remain near the quantized value, being insensitive to disorder scattering, until the energy gap collapses with increasing the Rashba coupling. We further show that the charge transport through counterpropagating spin-polarized edge channels is well quantized, which is associated with a topological invariant of the system.  相似文献   

3.
《中国物理 B》2021,30(6):67304-067304
We investigate the Hall effects of quadratic band crossing(QBC) fermions in a square optical lattice with spin–orbit coupling and orbital Zeeman term. We find that the orbital Zeeman term and shaking play critical roles in the systems,which can drive a topological transition from spin Hall phases to anomalous Hall phase with nonvanishing(spin) Chern numbers. Due to the interplay among the orbital Zeeman term, spin–orbit coupling, and the shaking, the phase diagram of the system exhibits rich phases, which are characterized by Chern number.  相似文献   

4.
Magnetic impurities play an important role in many spintronics-related materials. Motivated by this fact, we study the anomalous Hall effect in the presence of magnetic impurities, focusing on two-dimensional electron systems with Rashba spin-orbit coupling. We find a highly nonlinear dependence on the impurity polarization, including possible sign changes. At small impurity magnetizations, this is a consequence of the remarkable result that the linear term is independent of the spin-orbit coupling strength. Near saturation of the impurity spins, the anomalous Hall conductivity can be resonantly enhanced, due to interference between potential and magnetic scattering.  相似文献   

5.
Motivated by recent experiments by Lin et al., [Nature (London) 471, 83 (2011)] that engineered spin-orbit coupling in ultracold mixtures of bosonic atoms, we study the dipole oscillation of trapped spin-orbit-coupled noncondensed Bose and Fermi gases. We find that different directions of oscillation are coupled by the spin-orbit interactions. The phase difference between oscillatory motion in orthogonal directions and the trapping frequencies of the modes are shown to be related to the anomalous Hall conductivity. Our results can be used to experimentally determine the anomalous Hall conductivity for cold-atom systems.  相似文献   

6.
The Hall conductance of a two-dimensional electronic system with Rashba spin-orbit coupling in the presence of an external periodic potential of a superlattice and a perpendicular magnetic field has been calculated. The calculations were performed for an electron gas with parameters typical both of a system with weak spin-orbit coupling (AlGaAs/GaAs) and a system with relatively strong Rashba coupling (InGaAs/InAs).  相似文献   

7.
Based on the Kubo formalism, the anomalous Hall effect in a magnetic two-dimensional hole gas with cubic-Rashba spin-orbit coupling is studied in the presence of δ-function scattering potential. When the weak, short-ranged disorder scattering is considered in the Born approximation, we find that the self-energy becomes diagonal in the helicity basis and its value is independent of the wave number, and the vertex correction to the anomalous Hall conductivity due to impurity scattering vanishes when both subbandsare occupied. That is to say, the anomalous Hall effect is not vanishing or influenced by the vertex correction for two-dimensional heavy-hole system, which is in sharp contrast to the case of linear-Rashba spin-orbit coupling in the electron band when the short-range disorder scattering is considered and the extrinsic mechanism as well as the effect of external electric field on the SO interaction are ignored.  相似文献   

8.
张华峰  陈方  郁春潮  孙利辉  徐大海 《中国物理 B》2017,26(8):80304-080304
Properties of the ground-state solitons, which exist in the spin–orbit coupling(SOC) Bose–Einstein condensates(BEC) in the presence of optical lattices, are presented. Results show that several system parameters, such as SOC strength,lattice depth, and lattice frequency, have important influences on properties of ground state solitons in SOC BEC. By controlling these parameters, structure and spin polarization of the ground-state solitons can be effectively tuned, so manipulation of atoms may be realized.  相似文献   

9.
We show that simple laser configurations can give rise to "optical flux lattices," in which optically dressed atoms experience a periodic effective magnetic flux with high mean density. These potentials lead to narrow energy bands with nonzero Chern numbers. Optical flux lattices will greatly facilitate the achievement of the quantum Hall regime for ultracold atomic gases.  相似文献   

10.
We discuss the anomalous Hall effect in a two-dimensional electron gas subject to a spatially varying magnetization. This topological Hall effect does not require any spin-orbit coupling and arises solely from Berry phase acquired by an electron moving in a smoothly varying magnetization. We propose an experiment with a structure containing 2D electrons or holes of diluted magnetic semiconductor subject to the stray field of a lattice of magnetic nanocylinders. The striking behavior predicted for such a system (of which all relevant parameters are well known) allows one to observe unambiguously the topological Hall effect and to distinguish it from other mechanisms.  相似文献   

11.
We analytically and numerically discuss the stability and dynamics of neutral atoms in a two-dimensional optical lattice subjected to an additional harmonic trap potential and artificial magnetic field. The harmonic trap potential plays a key role in modifying the equilibrium state properties of the system and stabilizing the cyclotron orbits of the condensate.Meanwhile, the presence of the harmonic trap potential and lattice potential results in rich cyclotron dynamics of the condensate. The coupling effects of lattice potential, artificial magnetic field, and harmonic trap potential lead to single periodic, multi-periodic or quasi-periodic cyclotron orbits of the condensate. So we can control the cyclotron dynamics of neutral atoms in optical lattice by manipulating the strength of harmonic confinement, artificial magnetic field, and initial conditions. Our results provide a direct theoretical evidence for the cyclotron dynamics of neutral atoms in optical lattices exposed to the artificial gauge magnetic field and harmonic trap potential.  相似文献   

12.
朱国宝 《中国物理 B》2012,(11):429-433
The spin Hall and spin Nernst effects in graphene are studied based on Green’s function formalism.We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures.When both intrinsic and Rashba spin-orbit interactions are present,their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level.When the Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling,a weak kink in the conductance appears.The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances.When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling,the divergence becomes more obvious.  相似文献   

13.
We investigate theoretically the phase diagram of a spin-orbit coupled Bose gas in two-dimensional harmonic traps. We show that at strong spin-orbit coupling the single-particle spectrum decomposes into different manifolds separated by ?ω{⊥}, where ω{⊥} is the trapping frequency. For a weakly interacting gas, quantum states with Skyrmion lattice patterns emerge spontaneously and preserve either parity symmetry or combined parity-time-reversal symmetry. These phases can be readily observed in a spin-orbit coupled gas of ^{87}Rb atoms in a highly oblate trap.  相似文献   

14.
We describe a method to create fractional quantum Hall states of atoms confined in optical lattices. We show that the dynamics of the atoms in the lattice is analogous to the motion of a charged particle in a magnetic field if an oscillating quadrupole potential is applied together with a periodic modulation of the tunneling between lattice sites. In a suitable parameter regime the ground state in the lattice is of the fractional quantum Hall type, and we show how these states can be reached by melting a Mott-insulator state in a superlattice potential. Finally, we discuss techniques to observe these strongly correlated states.  相似文献   

15.
常凯  杨文 《物理学进展》2011,28(3):236-262
本文主要评述和介绍半导体微结构中自旋轨道耦合的研究和最近的研究进展。我们细致地讨论了半导体微结构中自旋轨道耦合的物理起源和窄带隙半导体量子阱中的自旋霍尔效应。我们发现目前国际上广泛采用的线性Rashba模型在较大的电子平面波矢处失效:即自旋轨道耦合导致的能带自旋劈裂不再随电子波矢的增加而增加,而是开始下降,即出现强烈的非线性行为。这种非线性的行为起源于导带和价带间耦合的减弱。这种非线性行为还会导致电子的D’yakonov-Perel’自旋弛豫速率在较高能量处下降,与线性模型的结果完全相反。在此基础上,我们构造统一描述电子和空穴自旋霍尔效应的理论框架。我们的方法可以非微扰地计入自旋轨道耦合对本征自旋霍尔效应的影响。我们将此方法应用于强自旋轨道耦合的情形,即窄带隙CdHgTe/CdTe半导体量子阱。我们发现调节外电场或量子阱的阱宽可以作为导致量子相变和本征自旋霍尔效应的开关。我们的工作可能会为区别和实验验证本征自旋霍尔效应提供物理基础。  相似文献   

16.
We demonstrate that the flow of a longitudinal unpolarized current through a ballistic two-dimensional electron gas with Rashba spin-orbit coupling will induce a nonequilibrium spin accumulation which has opposite signs for the two lateral edges and is, therefore, the principal observable signature of the spin Hall effect in two-probe semiconductor nanostructures. The magnitude of its out-of-plane component is gradually diminished by static disorder, while it can be enhanced by an in-plane transverse magnetic field. Moreover, our prediction of the longitudinal component of the spin Hall accumulation, which is insensitive to the reversal of the bias voltage, offers direct evidence to differentiate experimentally between the extrinsic, intrinsic, and mesoscopic spin Hall mechanisms.  相似文献   

17.
We propose a simple scheme for generating rotating atomic clusters in an optical lattice which produces states with quantum Hall and spin liquid properties. As the rotation frequencies increase, the ground state of a rotating cluster of spin-1 Bose atoms undergoes a sequence of (spin and orbit) transitions, which terminates at an angular momentum L(*) substantially lower than that of the boson Laughlin state. The spin-orbit correlations reflect "fermionization" of bosons facilitated by their spin degrees of freedom. We also show that the density of an expanding group of clusters has a scaling form which reveals the quantum Hall and spin structure of a single cluster.  相似文献   

18.
刘宋  颜玉珍  胡梁宾 《中国物理 B》2012,21(2):27201-027201
The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.  相似文献   

19.
《Current Applied Physics》2019,19(12):1362-1366
Based on a spin drift-diffusion model, we theoretically investigate the spin-orbit torque in ferromagnet/normal metal/insulator trilayers with considering the Rashba interfacial spin-orbit coupling at the normal metal/insulator interface. We find that the spin-orbit torque shows the opposite normal-metal-thickness dependences for the bulk spin-orbit coupling effect in the normal metal layer and for the interfacial spin-orbit coupling effect at the normal metal/insulator interface, offering a way to disentangle these two spin-orbit coupling effects. Moreover, we show that the conventional interpretation based on the bulk spin-orbit coupling effect overestimates the spin Hall angle and underestimates the spin diffusion length of the normal metal layer, when the interfacial contribution is non-negligible. Our result, a concise analytic expression of the spin-orbit torque considering both bulk and interface spin-orbit coupling effects, will be useful to design and interpret experiments on spin-orbit torque experiments in ferromagnet/normal metal/insulator trilayers.  相似文献   

20.
We propose an experimental scheme to create spin-orbit coupling in spin-3 Cr atoms using Raman processes. By employing the linear Zeeman effect and optical Stark shift, two spin states within the ground electronic manifold are selected, which results in a pseudospin-1/2 model. We further study the ground state structures of a spin-orbit-coupled Cr condensate. We show that, in addition to the stripe structures induced by the spin-orbit coupling, the magnetic dipole-dipole interaction gives rise to the vortex phase, in which a spontaneous spin vortex is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号