首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Synchrotron-based X-ray microtomography (micro CT) at the Advanced Light Source (ALS) line 8.3.2 at the Lawrence Berkeley National Laboratory produces three-dimensional micron-scale-resolution digital images of the pore space of the reservoir rock along with the spacial distribution of the fluids. Pore-scale visualization of carbon dioxide flooding experiments performed at a reservoir pressure demonstrates that the injected gas fills some pores and pore clusters, and entirely bypasses the others. Using 3D digital images of the pore space as input data, the method of maximal inscribed spheres (MIS) predicts two-phase fluid distribution in capillary equilibrium. Verification against the tomography images shows a good agreement between the computed fluid distribution in the pores and the experimental data. The model-predicted capillary pressure curves and tomography-based porosimetry distributions compared favorably with the mercury injection data. Thus, micro CT in combination with modeling based on the MIS is a viable approach to study the pore-scale mechanisms of CO2 injection into an aquifer, as well as more general multi-phase flows.  相似文献   

2.
By means of the porous plate method and mercury porosimetry intrusion tests, capillary pressure curves of three different sandstones were measured. The testing results have been exploited jointly with three relative permeability models of the pore space capillary type (Burdine’s model type), these models are widely used and in rather distinct fields. To do so, capillary pressure has been correlated to saturation degree using six of the most popular relations encountered in the literature. Model predictions were systematically compared to the experimentally measured relative permeabilities presented in the first part of this work. Comparison indicated that the studied models underestimate the water relative permeability and over-estimate that of the non-wetting phase. Moreover, this modeling proves to be unable to locate the significant points that are the limits of fields of saturation where the variation of the relative permeabilities becomes consequent. We also showed that, if pore structure is modeled as a “bundle of capillary tubes”, model predications are independent of the capillary pressure curve measuring method.  相似文献   

3.
A computational fluid dynamics (CFD) code based on the method of lines (MOL) approach was developed for the solution of transient, two-dimensional Navier-Stokes equations for incompressible separated internal flows in complex rectangular geometries. The predictive accuracy of the code was tested by applying it to the prediction of flow fields in both laminar and turbulent channel flows with and without sudden expansion, and comparing its predictions with either measured data or numerical results available in the literature. The predicted flow fields were found to be in favorable agreement with those available in the literature for laminar channel flow with sudden expansion and turbulent channel flow with Re=6600. The code was then applied to the prediction of the highly turbulent flow field in the inlet flue of a heat recovery steam generator (HRSG). The predicted flow field was found to display the same trend with the experimental findings and numerical solutions reported previously for a turbulent diverging duct. As the code uses the MOL approach in conjunction with (i) an intelligent higher-order spatial discretization scheme, (ii) a parabolic algorithm for pressure, and (iii) an elliptic grid generator using a body-fitted coordinate system for complex geometries, it provides an efficient algorithm for future direct numerical simulation (DNS) applications in complex rectangular geometries.  相似文献   

4.
In this article, a computational fluid dynamics algorithm is presented for simulations of complex unsteady flows around rigid moving bodies using an unstructured overset-grid method. For this purpose, a highly automated, three-dimensional, tetrahedral, unstructured overset-grid method is developed with one-cell-width overlapping zone in order to model the arbitrary geometries for steady and unsteady flow simulations. A method has been described to obtain the inter-grid boundaries of the one-cell-wide overlapping zone shared by a background grid and a minor grid. In the overset-grid methodology, vector intersection algorithm and bounding box techniques have been utilised. The mesh refinement and overset-scheme conservation studies proved the accuracy and efficiency of the method developed here. The applications of the developed algorithms were also performed through simulations that included complex internal flows around a flow-control butterfly valve as well as flows in an internal combustion engine with a moving piston. Lastly, validations with experimental data were conducted for both steady and unsteady flows around rigid bodies with relative motions.  相似文献   

5.
In this study, a methodology is proposed for obtaining information about the porous structure of materials by analysing data supplied by a hydric absorption test. A model of vertical cylindrical pores is used for studying the variation of absorbed mass versus time. The proposed methodology requires an estimation of the numerical interval in which the radius distribution must be calculated and a minimum amount of experimental data. The experimental tests are developed with a system, designed and built in our laboratory, that allows capture the amount of data necessary to use the calculus methodology proposed. This methodology is based on the derivative of normalized mass in relation to the square root of time of the capillary absorption tests. The simplicity and low cost, in many cases, of the capillary absorption tests compared to other experimental techniques such as mercury porosimetry or SEM, make it feasible to design a simple methodology to obtain valuable information about the structure of a porous material, pore size distribution, and tortuosity factor.  相似文献   

6.
A two-dimensional transient finite element model capable of simulating problems related to two-layer polymer flows has been developed. This technique represents an effective tool which can be used to study the possibility of the onset of interfacial instability in coextrusion flows, considering melt rheology as well as the fluid–geometry interaction. A code has been developed to solve the transient problem of the flow of bi-component systems of Newtonian and generalized Newtonian fluids through parallel plates and complex geometries, such as: 2:1 abrupt expansion, 2:1 (30°) expansion, 4:1 abrupt contraction and 4:1 tapered (30°) contraction. Solutions are compared with experimental data from the literature and results provided by linear stability analysis (LSA) for the case of parallel plate flows. Numerical results are in agreement with LSA results for the parallel plate geometry cases studied. The expansion geometries tend to stabilize flows in the parallel plate section downstream of the expansion. Contractions may give rise to break-up of the interface depending on the flow conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
We describe a computational method for the numerical simulation of three-dimensional transient flows of polymer solutions that extends the work of Harlen et al. [O.G. Harlen, J.M. Rallison, P. Szabó, A split Lagrangian–Eulerian method for simulating transient viscoelastic flows, J. Non-Newtonian Fluid Mech. 60 (1995) 81–104]. The method uses a Lagrangian computation of the stress together with an Eulerian computation of the velocity field. Adaptive mesh reconnection based on Delaunay tetrahedra is used to ensure well-shaped elements. Additional shape-quality improvement procedures are developed to improve the algorithm. We validate the method for the benchmark problem of a rigid sphere falling in a cylindrical pipe. Inertia is neglected. We compare results for the axisymmetric case with previous work (using a FENE model), and then consider the off-axis non-axisymmetric case. In the latter case, we find that as the sphere falls, it drifts across the pipe, a phenomenon previously observed in experiments but not fully explained. The physical mechanisms that cause the time-dependent drift are identified, and a simple model based on the normal stresses in the fluid is shown to predict the magnitude of the drift velocity.We also consider a second benchmark problem involving a constriction in an axisymmetric pipe. Numerical difficulties associated with ill-shaped elements near the concave boundary arise for higher Weissenberg numbers. The merits and drawbacks of the new numerical method, and its applicability to various flow geometries are discussed.  相似文献   

8.
Man  H. N.  Jing  X. D. 《Transport in Porous Media》2000,41(3):263-285
In order to model petrophysical properties of hydrocarbon reservoir rocks, the underlying physics occurring in realistic rock pore structures must be captured. Experimental evidence showing variations of wetting occurring within a pore, and existence of the so-called 'non-Archie' behaviour, has led to numerical models using pore shapes with crevices (for example, square, elliptic, star-like shapes, etc.). This paper presents theoretical derivations and simulation results of a new pore space network model for the prediction of petrophysical properties of reservoir rocks. The effects of key pore geometrical factors such as pore shape, pore size distribution and pore co-ordination number (pore connectivity) have been incorporated into the theoretical model. In particular, the model is used to investigate the effects of wettability and saturation history on electrical resistivity and capillary pressure characteristics. The petrophysical characteristics were simulated for reservoir rock samples. The use of the more realistic grain boundary pore (GBP) shape allows simulation of the generic behaviour of sandstone rocks, with various wetting scenarios. The predictions are in close agreement with electrical resistivity and capillary pressure characteristics observed in experiments.  相似文献   

9.

Soil–water retention curve (SRWC), also called soil moisture characteristic, is used for simulation models of soil water storage or soil aggregate stability. The present study addresses the modeling of SRWC with particular attention paid to hysteresis effects of water filling and draining the pores attributed to ink-bottle effects. For that purpose, an idealized pore size distribution previously developed for predicting water sorption isotherms on cementitious materials, and which can consider the double porosity structure of soils, is used. The input data of the model are assessed only from mercury intrusion porosimetry tests (MIP) and from grain size distribution (GSD). The hysteretic behavior of SRWC is reproduced in a satisfactory way. The model can also predict the specific surface area.

  相似文献   

10.
The conventional volume-of-fluid method has the potential to deal with large free surface deformation on a fixed Cartesian grid. However, when free-surface flows are within or over complex geometries of industrial relevance, such as free-surface flows over offshore oil platforms, it is advantageous to extend the method originally written in Cartesian forms into non-Cartesian forms. In the present study, an algorithm similar to the algorithm described by Rudman in 1997 is proposed for use with curvilinear co-ordinates. This extension results in the ability to model complex geometries which could not be modelled using the original algorithm. Excellent agreement between the solutions obtained on both orthogonal and non-orthogonal meshes is achieved, although in general the L 1 error, based on the exact solution, on the non-orthogonal mesh is slightly higher than that on the orthogonal mesh. The extended fluid flow solving capacity of the present method is demonstrated through its application to a non-orthogonal Rayleigh–Taylor instability problem.  相似文献   

11.
An improved immersed boundary method using a mass source/sink as well as momentum forcing is developed for simulating flows over or inside complex geometries. The present method is based on the Navier–Stokes solver adopting the fractional step method and a staggered Cartesian grid system. A more accurate formulation of the mass source/sink is derived by considering mass conservation of the virtual cells in the fluid crossed by the immersed boundary. Two flow problems (the decaying vortex problem and uniform flow past a circular cylinder) are used to validate the proposed formulation. The results indicate that the accuracy near the immersed boundary is improved by introducing the accurate mass source/sink. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
For the simple geometries of Couette and Poiseuille flows, the velocity profile maintains a similar shape from continuum to free molecular flow. Therefore, modifications to the fluid viscosity and slip boundary conditions can improve the continuum based Navier–Stokes solution in the non‐continuum non‐equilibrium regime. In this investigation, the optimal modifications are found by a linear least‐squares fit of the Navier–Stokes solution to the non‐equilibrium solution obtained using the direct simulation Monte Carlo (DSMC) method. Models are then constructed for the Knudsen number dependence of the viscosity correction and the slip model from a database of DSMC solutions for Couette and Poiseuille flows of argon and nitrogen gas, with Knudsen numbers ranging from 0.01 to 10. Finally, the accuracy of the models is measured for non‐equilibrium cases both in and outside the DSMC database. Flows outside the database include: combined Couette and Poiseuille flow, partial wall accommodation, helium gas, and non‐zero convective acceleration. The models reproduce the velocity profiles in the DSMC database within an L2 error norm of 3% for Couette flows and 7% for Poiseuille flows. However, the errors in the model predictions outside the database are up to five times larger. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
14.
For three-dimensional fluid flows in complex geometries, it is convenient to make predictions using a non-orthogonal boundary-fitted mesh. The present paper describes an economical method of solving the equations of motion for two and three dimensional problems using such meshes. The locations on the mesh at which the depenent variables are calculated, and the methods used to solve the equations, are key issues in the development of a successful algorithm; these are discussed in the present paper. Results obtained when the proposed method is applied to several problems are also described. The method is intended for flows in which compressibility effects do not dominate.  相似文献   

15.

This paper proposes the application of capillary and chain random models of pore space structure for determination of limit pore diameter distributions of porous materials, based on the mercury intrusion curves. Both distributions determine the range in which the pore diameter distribution of the investigated material occurs and defines the degree of inaccuracy of the method based on the mercury intrusion data caused by the indeterminacy of the sample shape and its pore space architecture. We derived equations describing the quasi-static process of mercury intrusion into the porous layer and porous ball with a random chain pore space structure and analysed the influence of the model parameters on the mercury intrusion curves. It was shown that the distribution of link length in the chain model of the pore space, random location of chain capillaries in the sample and the length distribution of the capillaries do not influence significantly the intrusion process. Therefore, a simple model of the mercury intrusion into the layer is proposed in which chain links of the pore space have random diameters and constant length. This model is used as a basic model of the intrusion process into a sample of any shape and size and with homogeneous and isotropic chain pore space architecture. The thickness of the layer then represents the mean length of chain capillaries in the sample. It was also proved that the capillary and chain models of pore space architecture are limit models of the network model identified in this paper with the pore architecture of the investigated sample. This justifies the application of both models for determination of limit cumulative distributions of pore diameters in porous materials based on the mercury intrusion data.

  相似文献   

16.
We present a pore-scale network model of two- and three-phase flow in disordered porous media. The model reads three-dimensional pore networks representing the pore space in different porous materials. It simulates wide range of two- and three-phase pore-scale displacements in porous media with mixed-wet wettability. The networks are composed of pores and throats with circular and angular cross sections. The model allows the presence of multiple phases in each angular pore. It uses Helmholtz free energy balance and Mayer–Stowe–Princen (MSP) method to compute threshold capillary pressures for two- and three-phase displacements (fluid configuration changes) based on pore wettability, pore geometry, interfacial tension, and initial pore fluid occupancy. In particular, it generates thermodynamically consistent threshold capillary pressures for wetting and spreading fluid layers resulting from different displacement events. Threshold capillary pressure equations are presented for various possible fluid configuration changes. By solving the equations for the most favorable displacements, we show how threshold capillary pressures and final fluid configurations may vary with wettability, shape factor, and the maximum capillary pressure reached during preceding displacement processes. A new cusp pore fluid configuration is introduced to handle the connectivity of the intermediate wetting phase at low saturations and to improve model’s predictive capabilities. Based on energy balance and geometric equations, we show that, for instance, a gas-to-oil piston-like displacement in an angular pore can result in a pore fluid configuration with no oil, with oil layers, or with oil cusps. Oil layers can then collapse to form cusps. Cusps can shrink and disappear leaving no oil behind. Different displacement mechanisms for layer and cusp formation and collapse based on the MSP analysis are implemented in the model. We introduce four different layer collapse rules. A selected collapse rule may generate different corner configuration depending on fluid occupancies of the neighboring elements and capillary pressures. A new methodology based on the MSP method is introduced to handle newly created gas/water interfaces that eliminates inconsistencies in relation between capillary pressures and pore fluid occupancies. Minimization of Helmholtz free energy for each relevant displacement enables the model to accurately determine the most favorable displacement, and hence, improve its predictive capabilities for relative permeabilities, capillary pressures, and residual saturations. The results indicate that absence of oil cusps and the previously used geometric criterion for the collapse of oil layers could yield lower residual oil saturations than the experimentally measured values in two- and three-phase systems.  相似文献   

17.
This paper presents a finite element solution algorithm for three‐dimensional isothermal turbulent flows for mold‐filling applications. The problems of interest present unusual challenges for both the physical modelling and the solution algorithm. High‐Reynolds number transient turbulent flows with free surfaces have to be computed on complex three‐dimensional geometries. In this work, a segregated algorithm is used to solve the Navier–Stokes, turbulence and front‐tracking equations. The streamline–upwind/Petrov–Galerkin method is used to obtain stable solutions to convection‐dominated problems. Turbulence is modelled using either a one‐equation turbulence model or the κ–ε two‐equation model with wall functions. Turbulence equations are solved for the natural logarithm of the turbulence variables. The change of dependent variables allows for a robust solution algorithm and good predictions even on coarse meshes. This is very important in the case of large three‐dimensional applications for which highly refined meshes result in untreatable large numbers of elements. The position of the flow front in the mold cavity is computed using a level set approach. Finally, equations are integrated in time using an implicit Euler scheme. The methodology presents the robustness and cost effectiveness needed to tackle complex industrial applications. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.

Porous media characterization is crucial to engineering projects where the pore shape has impact on performance gains. Membrane filters, sportswear fabrics, and tertiary oil recovery are a few examples. Kozeny–Carman (K–C) models are one of the most frequently used to understand, for instance, the relation between porosity, permeability, and other small-scale parameters. However, they have limitations, such as the inability to capture the correct dependence of permeability on porosity, the imperfect handling of the linear and nonlinear effects yielded by its fundamental quantities, and the insufficiency of geometrical parameters to predict the permeability correctly. In this paper, we cope with the problem of determining shape factors for generic geometries that represent sundry porous media configurations. Specifically, we propose a method that embeds the Poiseuille number into the classical K–C equation and returns a substitute shape factor term for its original counterpart. To the best of our knowledge, the existing formulations are unable to obtain shape factors for pores whose geometry is beyond the regular ones. We apply a Galerkin-based integral (GBI) method that determines shape factors for generic cross sections of pore channels. The approach is tested on straight capillaries with arbitrary cross sections subject to steady single-phase flow under the laminar regime. We show that shape factors for basic geometries known from experimental results are replicable exactly. Besides, we provide shape factors with precision up to 4 digits for a class of geometries of interest. As a way to demonstrate the applicability of the GBI approach, we report a case study that determines shape factors for 19 generic individual pore sections of a laboratory experiment involving flow rate measurements in an industrial arrangement of a water-agar packed bed. Porosity, flow behavior, and velocity distributions determined numerically achieve a narrow agreement with experimental values. The findings of this study provide parameters that can help to design new devices or mechanisms that depend on arbitrary pore shapes, as well as to characterize fluid flows in heterogeneous porous media.

  相似文献   

19.
The pores in cementitious materials, their sizes and connectivity have an important influence on the durability of concrete. Several microstructural models have been developed to simulate the three-dimensional pore network in cement pastes. In this article, microstructures with the $\upmu $ μ ic model are compared with experimental results. It is seen that despite having a resolution for the capillary pores very close to reality, the experimentally observed breakthrough diameter from mercury intrusion is much lower than the values obtained by applying an algorithm of mercury intrusion to the simulated microstructure. The effect of some of the most important input parameters on the pore sizes in the simulated microstructure explored. The phenomenon which seems best able to explain this discrepancy is that C–S–H is not in fact a phase with a smooth surface as represented in microstructural models, but a phase which grows as needles into the pore space, leading to very small water-filled capillary pores from quite young ages. The results demonstrate it will be extremely challenging to represent the porosity of real microstructures in microstructural models on the scale of hundreds of microns necessary to study macroscopic transport.  相似文献   

20.
Two different porous building materials have been previously measured and analysed (El-Abd and Milczarek, 2004, IEEE Trans. Nuclear Sci.; El-Abd et al., 2004, J. Phys. D) using neutron radiography to measure the water front position over time. The results from this experimental approach show a similar behaviour to the predictions from idealised model structures, in that there is a cross over point where the fastest rate of absorption at first favours the finer structure material and at later times favours the coarser pore structure material. The computer model, Pore-Cor** is used to generate the idealised structures and the absorption of fluid into porous structures follows a Bosanquet wetting algorithm for fluids undergoing both inertial and viscous dynamical flow (Ridgway and Gane, 2002, Colloids Surfaces A: Physicochem. Eng. Aspects 206, 217–239.). The model structures comprise cubic pores connected by cylindrical throats on a three-dimensional 10× 10× 10 position matrix simulating the void structure of porous media by fitting as closely as possible the modelled mercury intrusion curve to that of the experimentally determined mercury intrusion curve of the actual sample. They show the transition that occurs in the absorption behaviour from the linear t-dependent short timescale inertial regime to the familiar √t Lucas-Washburn viscous regime. The simulated absorption algorithm applied to these model structures also shows a fluid position behaviour that replicates qualitatively, given the limitation of representative sample volume, the cross over seen experimentally. Furthermore, the existence of a preferred wetting path is demonstrated in the experimental as well as the model wetting front behaviour. In the case of the structure containing the broader range of pore sizes, the wetting front is considered to proceed by a network of optimal size combinations (inertial wetting versus viscous drag) and connectivity, leaving some pores behind the wetting front unfilled or only partially filled. ** Pore-Cor is a software program of the Environmental and Fluids Modelling Group, University of Plymouth, Devon, PL4 8AA, U.K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号