首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large number (1253) of high-quality streaming potential coefficient (\(C_\mathrm{sp})\) measurements have been carried out on Berea, Boise, Fontainebleau, and Lochaline sandstones (the latter two including both detrital and authigenic overgrowth forms), as a function of pore fluid salinity (\(C_\mathrm{f})\) and rock microstructure. All samples were saturated with fully equilibrated aqueous solutions of NaCl (10\(^{-5}\) and 4.5 mol/dm\(^{3})\) upon which accurate measurements of their electrical conductivity and pH were taken. These \(C_\mathrm{sp}\) measurements represent about a fivefold increase in streaming potential data available in the literature, are consistent with the pre-existing 266 measurements, and have lower experimental uncertainties. The \(C_\mathrm{sp}\) measurements follow a pH-sensitive power law behaviour with respect to \(C_\mathrm{f}\) at medium salinities (\(C_\mathrm{sp} =-\,1.44\times 10^{-9} C_\mathrm{f}^{-\,1.127} \), units: V/Pa and mol/dm\(^{3})\) and show the effect of rock microstructure on the low salinity \(C_\mathrm{sp}\) clearly, producing a smaller decrease in \(C_\mathrm{sp}\) per decade reduction in \(C_\mathrm{f}\) for samples with (i) lower porosity, (ii) larger cementation exponents, (iii) smaller grain sizes (and hence pore and pore throat sizes), and (iv) larger surface conduction. The \(C_\mathrm{sp}\) measurements include 313 made at \(C_\mathrm{f} > 1\) mol/dm\(^{3}\), which confirm the limiting high salinity \(C_\mathrm{sp}\) behaviour noted by Vinogradov et al., which has been ascribed to the attainment of maximum charge density in the electrical double layer occurring when the Debye length approximates to the size of the hydrated metal ion. The zeta potential (\(\zeta \)) was calculated from each \(C_\mathrm{sp}\) measurement. It was found that \(\zeta \) is highly sensitive to pH but not sensitive to rock microstructure. It exhibits a pH-dependent logarithmic behaviour with respect to \(C_\mathrm{f}\) at low to medium salinities (\(\zeta =0.01133 \log _{10} \left( {C_\mathrm{f} } \right) +0.003505\), units: V and mol/dm\(^{3})\) and a limiting zeta potential (zeta potential offset) at high salinities of \({\zeta }_\mathrm{o} = -\,17.36\pm 5.11\) mV in the pH range 6–8, which is also pH dependent. The sensitivity of both \(C_\mathrm{sp}\) and \(\zeta \) to pH and of \(C_\mathrm{sp}\) to rock microstructure indicates that \(C_\mathrm{sp}\) and \(\zeta \) measurements can only be interpreted together with accurate and equilibrated measurements of pore fluid conductivity and pH and supporting microstructural and surface conduction measurements for each sample.  相似文献   

2.
Particle image velocimetry (PIV) has been used to investigate transitional and turbulent flow in a randomly packed bed of mono-sized transparent spheres at particle Reynolds number, \(20<{{ Re}}_{\mathrm{p}}< 3220\). The refractive index of the liquid is matched with the spheres to provide optical access to the flow within the bed without distortions. Integrated pressure drop data yield that Darcy law is valid at \({{ Re}}_{\mathrm{p}} \approx 80\). The PIV measurements show that the velocity fluctuations increase and that the time-averaged velocity distribution start to change at lower \({{ Re}}_{\mathrm{p}}\). The probability for relatively low and high velocities decreases with \({{ Re}}_{\mathrm{p}}\) and recirculation zones that appear in inertia dominated flows are suppressed by the turbulent flow at higher \({{ Re}}_{\mathrm{p}}\). Hence there is a maximum of recirculation at about \({{ Re}}_{\mathrm{p}} \approx 400\). Finally, statistical analysis of the spatial distribution of time-averaged velocities shows that the velocity distribution is clearly and weakly self-similar with respect to \({{ Re}}_{\mathrm{p}}\) for turbulent and laminar flow, respectively.  相似文献   

3.
Information transmission delays are an inherent factor of neuronal systems as a consequence of the finite propagation speeds and time lapses occurring by both dendritic and synaptic processes. In real neuronal systems, some delay between two neurons is too small and can be ignored, which results in partial time delay. In this paper, we focus on investigating influences of partial time delay on synchronization transitions in a excitatory–inhibitory (E–I) coupled neuronal networks. Here, we suppose time delay between two neurons equals to \(\tau \) with probability \(p_{\mathrm{delay}}\) and investigate effect of partial time delay on synchronization transitions of the neuronal networks by controlling \(\tau \) and \(p_{\mathrm{delay}}\) under three cases. In these three cases, excitatory synapses are always considered to delayed with probability \(p_{\mathrm{delay}}\), while inhibitory synapses are considered to be without delays (case I), delayed with probability \(p_{\mathrm{delay}}\) (case II), and always delayed (case III), respectively. It is revealed that, in the first two cases, partial time delay has little influences on synchronization of the neuronal network for small \(p_{\mathrm{delay}}\), while it could induce synchronization transitions at \(\tau \) around integer multiples of the period of individual neuron T when \(p_{\mathrm{delay}}\) is large enough, while in the case III, partial time delay could induce synchronization transitions at \(\tau \) being around odd integer multiples of T / 2 for small \(p_{\mathrm{delay}}\) and at \(\tau \) being around integer multiples of T for large \(p_{\mathrm{delay}}\). Most interesting observation is that partial time delay could induce frequent synchronization transitions at \(\tau \) being around integer multiples of T / 2 for intermediate \(p_{\mathrm{delay}}\). Moreover, effect of rewiring probability on synchronization transitions induced by partial time delay has been discussed. It is found that synchronization transitions induced by partial time delay are robust to rewiring probability for large \(p_{\mathrm{delay}}\) under the three cases.  相似文献   

4.
Single-phase permeability k has intensively been investigated over the past several decades by means of experiments, theories and simulations. Although the effect of surface roughness on fluid flow and permeability in single pores and fractures as well as networks of fractures was studied previously, its influence on permeability in a random mass fractal porous medium constructed of pores of different sizes remained as an open question. In this study, we, therefore, address the effect of pore–solid interface roughness on single-phase flow in random fractal porous media. For this purpose, we apply a mass fractal model to construct porous media with a priori known mass fractal dimensions \(2.579 \le D_{\mathrm{m}} \le 2.893\) characterizing both solid matrix and pore space. The pore–solid interface of the media is accordingly roughened using the Weierstrass–Mandelbrot approach and two parameters, i.e., surface fractal dimension \(D_{\mathrm{s}}\) and root-mean-square (rms) roughness height. A single-relaxation-time lattice Boltzmann method is applied to simulate single-phase permeability in the corresponding porous media. Results indicate that permeability decreases sharply with increasing \(D_{\mathrm{s}}\) from 1 to 1.1 regardless of \(D_{\mathrm{m}}\) value, while k may slightly increase or decrease, depending on \(D_{\mathrm{m}}\), as \(D_{\mathrm{s}}\) increases from 1.1 to 1.6.  相似文献   

5.
This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air–water flow, driven by a rotating top disk in a vertical conical container. As water height \(H_{\mathrm{w}}\) and cone half-angle \(\beta \) vary, numerous flow metamorphoses occur. They are investigated for \(\beta =30^{\circ }, 45^{\circ }\), and \(60^{\circ }\). For small \(H_{\mathrm{w}}\), the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as \(H_{\mathrm{w}}\) exceeds a threshold depending on \(\beta \). For all \(\beta \), the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.  相似文献   

6.
This study focuses on the development of a novel analysis technique for determining the intraparticle diffusivity \((D_{\mathrm{S}})\) and fluid film mass transfer coefficient \((k_\mathrm{F})\) from a concentration history curve of a recycle fixed-bed reactor without using the linear driving force approximation and empirical equations for the estimation of \(k_\mathrm{F}\). The recycle fixed-bed method requires lesser amounts of working fluid for experiment purposes, which is an advantage over the usual fixed-bed method. Based on the characterization results of the concentration history curves, simulated by rigorous numerical calculations, a novel analysis technique was established. The \(D_{\mathrm{S}}\) value can be determined from the experimentally obtained time at which the concentration of the curve is minimal \((t_{C\mathrm{min}})\). The \(k_\mathrm{F}\) value can be determined from the \(D_{\mathrm{S}}\) value and Biot number (Bi), which can be estimated from the experimental ratio of the maximum concentration to the minimum concentration \((c_{\max }/c_{\min })\). The \(D_{\mathrm{S}}\) and \(k_\mathrm{F}\) values of phenol adsorption on an activated carbon material were determined experimentally using the proposed analysis method. This method enables the determination of reliable adsorption kinetic parameters through a simple and economical experiment. However, appropriate experimental data must be acquired under regulated experimental conditions, especially in the case of fluctuation of the concentration history curve.  相似文献   

7.
We show that the mean wall-shear stresses in wall-modeled large-eddy simulations (WMLES) of high-speed flows can be off by up to \(\approx 100\%\) with respect to a DNS benchmark when using the van-Driest-based damping function, i.e., the conventional damping function. Errors in the WMLES-predicted wall-shear stresses are often attributed to the so-called log-layer mismatch, which, albeit also an error in wall-shear stresses \(\tau _\mathrm{w}\), is an error of about \(15\%\). The larger error identified here cannot be removed using the previously developed remedies for the log-layer mismatch. This error may be removed by using the semi-local scaling, i.e., \(l_\nu =\mu /\sqrt{\rho \tau _\mathrm{w}}\), in the damping function, where \(\mu \) and \(\rho \) are the local mean dynamic viscosity and density, respectively.  相似文献   

8.
Consider a weakly nonlinear CGL equation on the torus \(\mathbb {T}^d\):
$$\begin{aligned} u_t+i\Delta u=\epsilon [\mu (-1)^{m-1}\Delta ^{m} u+b|u|^{2p}u+ ic|u|^{2q}u]. \end{aligned}$$
(*)
Here \(u=u(t,x)\), \(x\in \mathbb {T}^d\), \(0<\epsilon <<1\), \(\mu \geqslant 0\), \(b,c\in \mathbb {R}\) and \(m,p,q\in \mathbb {N}\). Define \(I(u)=(I_{\mathbf {k}},\mathbf {k}\in \mathbb {Z}^d)\), where \(I_{\mathbf {k}}=v_{\mathbf {k}}\bar{v}_{\mathbf {k}}/2\) and \(v_{\mathbf {k}}\), \(\mathbf {k}\in \mathbb {Z}^d\), are the Fourier coefficients of the function \(u\) we give. Assume that the equation \((*)\) is well posed on time intervals of order \(\epsilon ^{-1}\) and its solutions have there a-priori bounds, independent of the small parameter. Let \(u(t,x)\) solve the equation \((*)\). If \(\epsilon \) is small enough, then for \(t\lesssim {\epsilon ^{-1}}\), the quantity \(I(u(t,x))\) can be well described by solutions of an effective equation:
$$\begin{aligned} u_t=\epsilon [\mu (-1)^{m-1}\Delta ^m u+ F(u)], \end{aligned}$$
where the term \(F(u)\) can be constructed through a kind of resonant averaging of the nonlinearity \(b|u|^{2p}+ ic|u|^{2q}u\).
  相似文献   

9.
The presence of a finite tangential velocity on a hydrodynamically slipping surface is known to reduce vorticity production in bluff body flows substantially while at the same time enhancing its convection downstream and into the wake. Here, we investigate the effect of hydrodynamic slippage on the convective heat transfer (scalar transport) from a heated isothermal circular cylinder placed in a uniform cross-flow of an incompressible fluid through analytical and simulation techniques. At low Reynolds (\({\textit{Re}}\ll 1\)) and high Péclet (\({\textit{Pe}}\gg 1\)) numbers, our theoretical analysis based on Oseen and thermal boundary layer equations allows for an explicit determination of the dependence of the thermal transport on the non-dimensional slip length \(l_s\). In this case, the surface-averaged Nusselt number, Nu transitions gradually between the asymptotic limits of \(Nu \sim {\textit{Pe}}^{1/3}\) and \(Nu \sim {\textit{Pe}}^{1/2}\) for no-slip (\(l_s \rightarrow 0\)) and shear-free (\(l_s \rightarrow \infty \)) boundaries, respectively. Boundary layer analysis also shows that the scaling \(Nu \sim {\textit{Pe}}^{1/2}\) holds for a shear-free cylinder surface in the asymptotic limit of \({\textit{Re}}\gg 1\) so that the corresponding heat transfer rate becomes independent of the fluid viscosity. At finite \({\textit{Re}}\), results from our two-dimensional simulations confirm the scaling \(Nu \sim {\textit{Pe}}^{1/2}\) for a shear-free boundary over the range \(0.1 \le {\textit{Re}}\le 10^3\) and \(0.1\le {\textit{Pr}}\le 10\). A gradual transition from the lower asymptotic limit corresponding to a no-slip surface, to the upper limit for a shear-free boundary, with \(l_s\), is observed in both the maximum slip velocity and the Nu. The local time-averaged Nusselt number \(Nu_{\theta }\) for a shear-free surface exceeds the one for a no-slip surface all along the cylinder boundary except over the downstream portion where unsteady separation and flow reversal lead to an appreciable rise in the local heat transfer rates, especially at high \({\textit{Re}}\) and Pr. At a Reynolds number of \(10^3\), the formation of secondary recirculating eddy pairs results in appearance of additional local maxima in \(Nu_{\theta }\) at locations that are in close proximity to the mean secondary stagnation points. As a consequence, Nu exhibits a non-monotonic variation with \(l_s\) increasing initially from its lowermost value for a no-slip surface and then decreasing before rising gradually toward the upper asymptotic limit for a shear-free cylinder. A non-monotonic dependence of the spanwise-averaged Nu on \(l_s\) is observed in three dimensions as well with the three-dimensional wake instabilities that appear at sufficiently low \(l_s\), strongly influencing the convective thermal transport from the cylinder. The analogy between heat transfer and single-component mass transfer implies that our results can directly be applied to determine the dependency of convective mass transfer of a single solute on hydrodynamic slip length in similar configurations through straightforward replacement of Nu and \({\textit{Pr}}\) with Sherwood and Schmidt numbers, respectively.  相似文献   

10.
In this paper we contribute to the generic theory of Hamiltonians by proving that there is a \(C^2\)-residual \({\mathcal {R}}\) in the set of \(C^2\) Hamiltonians on a closed symplectic manifold \(M\), such that, for any \(H\in {\mathcal {R}}\), there is a full measure subset of energies \(e\) in \(H(M)\) such that the Hamiltonian level \((H,e)\) is topologically mixing; moreover these level sets are homoclinic classes.  相似文献   

11.
In continuation of Matsumoto’s paper (Nonlinearity 25:1495–1511, 2012) we show that various subspaces are \(C^{\infty }\)-dense in the space of orientation-preserving \(C^{\infty }\)-diffeomorphisms of the circle with rotation number \(\alpha \), where \(\alpha \in {\mathbb {S}}^1\) is any prescribed Liouville number. In particular, for every odometer \({\mathcal {O}}\) of product type we prove the denseness of the subspace of diffeomorphisms which are orbit-equivalent to \({\mathcal {O}}\).  相似文献   

12.
Stereoscopic particle image velocimetry has been used to investigate inertia dominated, transitional and turbulent flow in a randomly packed bed of monosized PMMA spheres. By using an index-matched fluid, the bed is optically transparent and measurements can be performed in an arbitrary position within the porous bed. The velocity field observations are carried out for particle Reynolds numbers, \({Re}_{{p}}\), between 20 and 3220, and the sampling is done at a frequency of 75 Hz. Results show that, in porous media, the dynamics of the flow can vary significantly from pore to pore. At \({Re}_{{p}}\) around 400 the spatially averaged time fluctuations of total velocity reach a maximum and the spatial variation of the time-averaged total velocity, \(u_\mathrm{tot}\) increases up to about the same \({Re}_{{p}}\) and then it decreases. Also in the studied planes, a considerable amount of the fluid moves in the perpendicular directions to the main flow direction and the time-averaged magnitude of the velocity in the main direction, \(u_{x}\), has an averaged minimum of 40% of the magnitude of \(u_\mathrm{tot}\) at \({Re}_{{p}}\) about 400. For \({Re}_{{p}} > 1600\), this ratio is nearly constant and \(u_{x}\) is on average a little bit less than 50% of \(u_\mathrm{tot}\). The importance of the results for longitudinal and transverse dispersion is discussed.  相似文献   

13.
In this paper we show a striking contrast in the symmetries of equilibria and extremisers of the total elastic energy of a hyperelastic incompressible annulus subject to pure displacement boundary conditions. Indeed upon considering the equilibrium equations, here, the nonlinear second order elliptic system formulated for the deformation \(u=(u_{1}, \ldots, u_{N})\):
$$ {\mathbb{E}} {\mathbb{L}}[u, {\mathbf {X}}] = \left \{ \textstyle\begin{array}{l@{\quad}l} \Delta u = \operatorname{div}(\mathscr{P} (x) \operatorname{cof} \nabla u) & \textrm{in }{\mathbf {X}},\\ \det\nabla u = 1 & \textrm{in }{\mathbf {X}},\\ u \equiv\varphi& \textrm{on }\partial{\mathbf {X}}, \end{array}\displaystyle \right . $$
where \({\mathbf {X}}\) is a finite, open, symmetric \(N\)-annulus (with \(N \ge2\)), \(\mathscr{P}=\mathscr{P}(x)\) is an unknown hydrostatic pressure field and \(\varphi\) is the identity mapping, we prove that, despite the inherent rotational symmetry in the system, when \(N=3\), the problem possesses no non-trivial symmetric equilibria whereas in sharp contrast, when \(N=2\), the problem possesses an infinite family of symmetric and topologically distinct equilibria. We extend and prove the counterparts of these results in higher dimensions by way of showing that a similar dichotomy persists between all odd vs. even dimensions \(N \ge4\) and discuss a number of closely related issues.
  相似文献   

14.
We consider a family of linearly viscoelastic shells with thickness \(2\varepsilon\), clamped along their entire lateral face, all having the same middle surface \(S=\boldsymbol{\theta}(\bar{\omega})\subset \mathbb{R}^{3}\), where \(\omega\subset\mathbb{R}^{2}\) is a bounded and connected open set with a Lipschitz-continuous boundary \(\gamma\). We make an essential geometrical assumption on the middle surface \(S\), which is satisfied if \(\gamma\) and \(\boldsymbol{\theta}\) are smooth enough and \(S\) is uniformly elliptic. We show that, if the applied body force density is \(O(1)\) with respect to \(\varepsilon\) and surface tractions density is \(O(\varepsilon)\), the solution of the scaled variational problem in curvilinear coordinates, \(\boldsymbol{u}( \varepsilon)\), defined over the fixed domain \(\varOmega=\omega\times (-1,1)\) for each \(t\in[0,T]\), converges to a limit \(\boldsymbol{u}\) with \(u_{\alpha}(\varepsilon)\rightarrow u_{\alpha}\) in \(W^{1,2}(0,T,H ^{1}(\varOmega))\) and \(u_{3}(\varepsilon)\rightarrow u_{3}\) in \(W^{1,2}(0,T,L^{2}(\varOmega))\) as \(\varepsilon\to0\). Moreover, we prove that this limit is independent of the transverse variable. Furthermore, the average \(\bar{\boldsymbol{u}}= \frac{1}{2}\int_{-1}^{1} \boldsymbol{u}dx_{3}\), which belongs to the space \(W^{1,2}(0,T, V_{M}( \omega))\), where
$$V_{M}(\omega)=H^{1}_{0}(\omega)\times H^{1}_{0}(\omega)\times L ^{2}(\omega), $$
satisfies what we have identified as (scaled) two-dimensional equations of a viscoelastic membrane elliptic shell, which includes a long-term memory that takes into account previous deformations. We finally provide convergence results which justify those equations.
  相似文献   

15.
In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface.  相似文献   

16.
Accurate monitoring of multiphase displacement processes is essential for the development, validation and benchmarking of numerical models used for reservoir simulation and for asset characterization. Here we demonstrate the first application of a chemically-selective 3D magnetic resonance imaging (MRI) technique which provides high-temporal resolution, quantitative, spatially resolved information of oil and water saturations during a dynamic imbibition core flood experiment in an Estaillades carbonate rock. Firstly, the relative saturations of dodecane (\(S_{\mathrm{o}})\) and water (\(S_{\mathrm{w}})\), as determined from the MRI measurements, have been benchmarked against those obtained from nuclear magnetic resonance (NMR) spectroscopy and volumetric analysis of the core flood effluent. Excellent agreement between both the NMR and MRI determinations of \(S_{\mathrm{o}}\) and \(S_{\mathrm{w}}\) was obtained. These values were in agreement to 4 and 9% of the values determined by volumetric analysis, with absolute errors in the measurement of saturation determined by NMR and MRI being 0.04 or less over the range of relative saturations investigated. The chemically-selective 3D MRI method was subsequently applied to monitor the displacement of dodecane in the core plug sample by water under continuous flow conditions at an interstitial velocity of \(1.27\times 10^{-6}\,\hbox {m}\,\hbox {s}^{-1}\) (\(0.4\,\hbox {ft}\,\hbox {day}^{-1})\). During the core flood, independent images of water and oil distributions within the rock core plug at a spatial resolution of \(0.31\,\hbox {mm}\times 0.39\,\hbox {mm} \times 0.39\,\hbox {mm}\) were acquired on a timescale of 16 min per image. Using this technique the spatial and temporal dynamics of the displacement process have been monitored. This MRI technique will provide insights to structure–transport relationships associated with multiphase displacement processes in complex porous materials, such as those encountered in petrophysics research.  相似文献   

17.
A novel model is presented for estimating steady-state co- and counter-current relative permeabilities analytically derived from macroscopic momentum equations originating from mixture theory accounting for fluid–fluid (momentum transfer) and solid–fluid interactions (friction). The full model is developed in two stages: first as a general model based on a two-fluid Stokes formulation and second with further specification of solid–fluid and fluid–fluid interaction terms referred to as \(R_{{i}}\) (i =  water, oil) and R, respectively, for developing analytical expressions for generalized relative permeability functions. The analytical expressions give a direct link between experimental observable quantities (end point and shape of the relative permeability curves) versus water saturation and model input variables (fluid viscosities, solid–fluid/fluid–fluid interactions strength and water and oil saturation exponents). The general two-phase model is obeying Onsager’s reciprocal law stating that the cross-mobility terms \(\lambda _\mathrm{wo}\) and \(\lambda _\mathrm{ow}\) are equal (requires the fluid–fluid interaction term R to be symmetrical with respect to momentum transfer). The fully developed model is further tested by comparing its predictions with experimental data for co- and counter-current relative permeabilities. Experimental data indicate that counter-current relative permeabilities are significantly lower than corresponding co-current curves which is captured well by the proposed model. Fluid–fluid interaction will impact the shape of the relative permeabilities. In particular, the model shows that an inflection point can occur on the relative permeability curve when the fluid–fluid interaction coefficient \(I>0\) which is not captured by standard Corey formulation. Further, the model predicts that fluid–fluid interaction can affect the relative permeability end points. The model is also accounting for the observed experimental behavior that the water-to-oil relative permeability ratio \(\hat{{k}}_{\mathrm{rw}} /\hat{{\mathrm{k}}}_{\mathrm{ro}} \) is decreasing for increasing oil-to-water viscosity ratio. Hence, the fully developed model looks like a promising tool for analyzing, understanding and interpretation of relative permeability data in terms of the physical processes involved through the solid–fluid interaction terms \(R_{{i}}\) and the fluid–fluid interaction term R.  相似文献   

18.
Particle image velocimetry (PIV) has been significantly advanced since its conception in early 1990s. With the advancement of imaging modalities, applications of 2D PIV have far expanded into biology and medicine. One example is echocardiographic particle image velocimetry that is used for in vivo mapping of the flow inside the heart chambers with opaque boundaries. Velocimetry methods can help better understanding the biomechanical problems. The current trend is to develop three-dimensional velocimetry techniques that take advantage of modern medical imaging tools. This study provides a novel framework for validation of velocimetry methods that are inherently three dimensional such as but not limited to those acquired by 3D echocardiography machines. This framework creates 3D synthetic fields based on a known 3D velocity field \({\mathbf{V}}\) and a given 3D brightness field \({\mathbf{B}}\). The method begins with computing the inverse flow \({\mathbf{V}}^{\varvec{*}} \) based on the velocity field \({\mathbf{V}}\). Then the transformation of \({\mathbf{B}}\), imposed by \({\mathbf{V}}\), is calculated using the computed inverse flow according to \({\mathbf{B}}^{\varvec{*}} \left( {\mathbf{x}} \right) = {\mathbf{B}}\left( {{\mathbf{x}} + {\mathbf{V}}^{\varvec{*}} \left( {\mathbf{x}} \right)} \right)\), where x is the coordinates of voxels in \({\mathbf{B}}^{\varvec{*}} \), with a 3D weighted average interpolation, which provides high accuracy, low memory requirement, and low computational time. To check the validity of the framework, we generate pairs of 3D brightness fields by employing Hill’s spherical vortex velocity field. \({\mathbf{B}}\) and the generated \({\mathbf{B}}^{\varvec{*}} \) are then processed by our in-house 3D particle image velocimetry software to obtain the interrelated velocity field. The results indicates that the computed and imposed velocity fields are in agreement.  相似文献   

19.
This study investigated the physical clogging of uniformly graded porous media under constant flow rates using natural porous media and suspensions. The porous media selected for this experimental study was a fine-to-medium sandy soil fractioned into thirteen uniformly graded beds: seven unisize beds and six uniform beds. The physical clogging of the beds was studied using two types of silt suspensions as along with two suspension concentrations and three water discharges. It was found that the permeability reduction due to physical clogging \([(K_\mathrm{i} - K_\mathrm{t})/K_\mathrm{i}]\) increased with decreasing \({D}_{15}/{d}_{85}\) ratios until a critical value of \({D}_{15}/{d}_{85}\), after which a surface mat of suspension was formed on the porous media. It was also found that the value of reduced permeability at any time (at any number of pore volumes of injected suspension-laden water), \(K_\mathrm{t}\), is directly proportional to square of \({D}_{15}\) and inversely proportional to \({C}_{\mathrm{u}}\) of the porous media and \({d}_{85}\) of suspensions. The effects of suspension type and flow rates on physical clogging seemed to depend on the size of the pores in the porous media.  相似文献   

20.
In this article, we investigate the initial and boundary blow-up problem for the \(p\)-Laplacian parabolic equation \(u_t-\Delta _p u=-b(x,t)f(u)\) over a smooth bounded domain \(\Omega \) of \(\mathbb {R}^N\) with \(N\ge 2\), where \(\Delta _pu=\mathrm{div}(|\nabla u|^{p-2}\nabla u)\) with \(p>1\), and \(f(u)\) is a function of regular variation at infinity. We study the existence and uniqueness of positive solutions, and their asymptotic behaviors near the parabolic boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号