首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We report the formation of Si(1 1 3)-3 × 2 facets upon exposing oxygens on the Si(5 5 12) surface at an elevated temperature. These facets are found to form only for a limited range of oxygen exposure and exhibit a well-defined 3 × 2 LEED pattern. We also find the surface electronic state unique only to the facets in the valence band. The spectral feature of these electronic states and the behavior of a (1/3 1/2) LEED spot upon oxygen contents in the facets indicate that the formation is a heterogeneous mixture of the clean Si(1 1 3) facets free of oxygens and other facets containing oxygen atoms.  相似文献   

2.
The initial Ge growth stages on a (√3 × √3)R30°-reconstructed SiC(0 0 0 1) surface (√3) have been studied using a complete set of surface techniques such as reflection high energy electron diffraction (RHEED), low energy electron diffraction (LEED), atomic force microscopy (AFM) and photoemission and compared with similar Si surface enrichments in place of Ge. The investigations essentially focus on the wetting growth-regimes that are favoured by the use of the √3 surface as a starting substrate, this surface being the closest to a smooth and ideally truncated Si-terminated face of hexagonal SiC(0 0 0 1). Depending on temperature and Ge or Si coverages, varying surface organizations are obtained. They range from unorganized layer by layer growths to relaxed Ge(1 1 1) or Si(1 1 1) island growths, through intermediate attempts of coherent and strained Ge or Si surface layers, characterized by 4 × 4 and 3 × 3 surface reconstructions, respectively. RHEED intensity oscillation recordings, as a function of Ge or Si deposited amounts, have been particularly helpful to pinpoint the limited (by the high lattice mismatch) existence domains of these interesting coherent phases, either in terms of formation temperature or surface coverages. Prominently comparable data for these two Ge- and Si-related reconstructions allow us to propose an atomic model for the still unexplained Ge-4 × 4 one. It is based on a same local organization in trimer and ad-atom units for the Ge excess as admitted for the Si-excess of the 3 × 3 surface, the higher strain nevertheless favouring arrangements, for the Ge-units, in 4 × 4 arrays instead of 3 × 3 Si ones. Admitting such models, 1.25 and 1.44 monolayers of Ge and Si, should, respectively, be able to lie coherently on SiC, with respective lattice mismatches near 30% and 25%. The experimental RHEED-oscillations values are compatible with such theoretical ones. Moreover, these RHEED coverage determinations (for layer completion, for instance) inform us in turn about the initial Si richness of the starting √3 reconstruction and help us to discriminate between earlier contradictory atomic models proposed in the literature.  相似文献   

3.
The structure of the Si(1 1 1)-6 × 1-Ag surface is investigated using crystal truncation rod (CTR) scattering along 00 rod. For the measurement, we developed a manipulator suitable for observing CTR scattering at large momentum transfer perpendicular to the surface. The heights of the silver and reconstructed silicon atoms from the substrate were determined. We also compared the obtained positions with those of the Si(1 1 1)-√3 × √3-Ag surface and found that the heights of those reconstructed atoms are almost the same.  相似文献   

4.
J.R. Ahn  K.-S. An 《Surface science》2006,600(12):2501-2504
The surface electronic structure of Sb/Si(1 1 3)2 × 5 was investigated by angle-resolved photoemission spectroscopy experiments. This reveals Sb/Si(1 1 3)2 × 5 to have three surface bands with anisotropic two-dimensional characteristics. The band widths of the surface bands along is larger than along . The number of surface bands of Sb/Si(1 1 3)2 × 5 and their band dispersions along and are quite analogous with those of Sb/Si(1 1 3)2 × 2 composed of Sb adatom and Si tetramer chains. The electronic structure analogy suggests that Sb/Si(1 1 3)2 × 5 and Sb/Si(1 1 3)2 × 2 have common building blocks such as Sb adatom and Si tetramer chains.  相似文献   

5.
The surface structure of Si(1 1 1)-6 × 1-Ag was investigated using surface X-ray diffraction techniques. By analyzing the CTR scattering intensities along 00 rod, the positions of the Ag and reconstructed Si atoms perpendicular to the surface were determined. The results agreed well with the HCC model proposed for a 3 × 1 structure induced by alkali-metals on a Si(1 1 1) substrate. The heights of the surface Ag and Si atoms did not move when the surface structure changed from Si(1 1 1)-√3 × √3-Ag to Si(1 1 1)-6 × 1-Ag by the desorption of the Ag atoms. From the GIXD measurement, the in-plane arrangement of the surface Ag atoms was determined. The results indicate that the Ag atoms move large distances at the phase transition between the 6 × 1 and 3 × 1 structures.  相似文献   

6.
Initial adsorption of oxygen molecules on the Si(1 1 0)-16 × 2 surface and subsequent modification of the bonding states induced by mild (300 °C) annealing have been studied by synchrotron-radiation photoemission spectroscopy and scanning-tunneling microscopy. It has been shown that upon annealing, the intensity and the energy positions of the Si 2p suboxide components shift towards the values characteristic for the thermal oxide. This indicates the presence of a metastable chemisorption state of oxygen on the Si(1 1 0)-16 × 2 surface.  相似文献   

7.
Na adsorption at room temperature causes the Na/Si(1 1 1)3 × 1 surface with Na coverage of 1/3 monolayer (ML) to transit into the Na/Si(1 1 1)6 × 1 surface at 1/2 ML and sequentially into the Na/Si(1 1 1)3 × 1 surface at 2/3 ML. The phase transition was studied by Si 2p core-level photoemission spectroscopy. The detailed line shape analysis of the Si 2p core-level spectrum of the Na/Si(1 1 1)3 × 1 surface (2/3 ML) is presented and compared to the Na/Si(1 1 1)3 × 1 surface (1/3 ML) which is composed of Si honeycomb chain-channel structures. This suggests that as additional Na atoms form atomic chains resulting in the Na/Si(1 1 1)3 × 1 surface (2/3 ML), the inner atoms of the Si honeycomb chain-channel structure is buckled due to the additional Na atoms.  相似文献   

8.
The development of contact potential difference (CPD) inhomogeneities on oxide-covered silicon samples was investigated by monitoring the CPD of a clean Si(0 0 1) 2 × 1 surface during exposure to molecular oxygen with Kelvin Probe Force Microscopy. A steady fluctuation level is reached within the completion of a monolayer of oxide. Non-continuous oxygen exposure at room temperature and at lower temperatures unequivocally demonstrates the coexistence of two oxidation processes. One of these processes involves a metastable precursor to oxygen dissociation.  相似文献   

9.
Effect of oxygen exposure on the magnetic properties of ultrathin Co/Si(1 1 1)-7×7 films have been studied. In ultrahigh vacuum environment, Auger electron spectroscopy (AES) analysis shows that no oxygen adsorption occurs on Si(1 1 1)-7×7 surface and Co-Si compound interfaces. As the thickness of Co films increases above 5 monolayers (ML), pure cobalt islands form on the surface and the amount of oxygen on the surface layers increases with increasing the oxygen exposure time. From the results of slight chemical shift and depth profiling measurements, the oxygen is weakly adsorbed on the topmost layer of 15 ML Co/Si(1 1 1) films. The adsorbed oxygen influences the electronic density of states of Co and leads to the changes of the magnetic properties. The appearance of the O/Co interface could modify the stress anisotropy, as a result, the coercivity of ultrathin Co/Si(1 1 1) films are enhanced. As an example for 15 ML Co/Si(1 1 1), the coercivity increases from 140 to 360 Oe with 5000 Langmuir of oxygen exposure.  相似文献   

10.
The electronic structure of the c(2 × 2)-Si/Cu(0 1 1) surface alloy has been investigated and compared to the structures seen in the three phases of the (√3 × √3)R30°Cu2Si/Cu(1 1 1) system, using LCAO-DFT. The weighted surface energy increase between the alloyed Cu(0 1 1) and Cu(1 1 1) surfaces is 126.7 meV/Si atom. This increase in energy for the (0 1 1) system when compared to the (1 1 1) system is assigned to the transition from a hexagonal to a rectangular local bonding environment for the Si ion cores, with the hexagonal environment being energetically more favorable. The Si 3s state is shown to interact covalently with the Cu 4s and 4p states whereas the Si 3p state, and to a lesser extent the Si 3d state, forms a mixture of covalent and metallic bonds with the Cu states. The Cu 4s and 4p states are shown to be altered by approximately the same amount by both the removal of Cu ion cores and the inclusion of Si ion cores during the alloying of the Cu(0 1 1) surface. However, the Cu 3d states in the surface and second layers of the alloy are shown to be more significantly altered during the alloying process by the removal of Cu ion cores from the surface layer rather than by the addition of Si ion cores. This is compared to the behavior of the Cu 3d states in the surface and second layers of the each phase of the (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloy and consequently the loss of Cu-Cu periodicity during alloying of the Cu(0 1 1) surface is conjectured as the driving force for changes to the Cu 3d states. The accompanying changes to the Cu 4s and 4p states in both the c(2 × 2)-Si/Cu(0 1 1) and (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloys are quantified and compared. The study concludes with a brief quantitative study of changes in the bond order of the Cu-Cu bonds during alloying of both Cu(0 1 1) and Cu(1 1 1) surfaces.  相似文献   

11.
Yun Li  Ling Ye  Xun Wang 《Surface science》2006,600(2):298-304
A new structural model with fluctuant Si-trimers and missing Si-adatom is proposed for Si-terminated 6H-SiC(0 0 0 1)(3 × 3) reconstruction. The atomic and electronic structures of the model are studied using first principles pseudopotential density-functional approach. The calculated surface electronic density of states coincides quantitatively with the experimental results of photoemission and electron energy loss spectroscopy. Based on the calculations, the Patterson map and scanning tunneling microscopic (STM) images simulated for the new model agree more satisfactorily with the experimental X-ray diffraction and STM observations than that for previously proposed models. The calculations of formation energies suggest that the new structure would be formed under the environment of dilute Si vapor around the surface in the preparation process.  相似文献   

12.
The adsorption of molecular oxygen on the c(2 × 8) reconstruction of quenched Si(1 1 1) surfaces has been studied at the atomic scale using scanning tunneling microscopy (STM) at room temperature (RT). It has been found that clean well reconstructed c(2 × 8) adatoms do not react with O2 molecules but that a limited oxidation can start where adatom sites arranged in reconstructed structures are present. Comparison between O2 adsorption on Si(1 1 1)-c(2 × 8) and Si(1 1 1)-7 × 7 reconstructions coexisting on the same quenched silicon surface has been carried out in detail. For each atomic site present on the surface the variation of reacted sites with exposure has been measured. For low O2 exposures, bright and dark oxygen induced sites appear on the Si(1 1 1)-7 × 7, while Si(1 1 1)-c(2 × 8) does not oxidized at all. At high O2 exposures, large oxidation areas have spread on the 7 × 7 reconstruction, preferentially on the faulted halves of the unit cell, and smaller oxidation areas induced by topological defects have grown all around clean un-reacted c(2 × 8) regions.  相似文献   

13.
We have investigated the electronic structure of the Yb/Si(1 1 1)-(3 × 2) surface using angle-resolved photoelectron spectroscopy. Five surface states have been identified in the gap of the bulk band projection. Among these five surface state, the dispersions of three of them agree well with those of the surface states of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. The dispersions of the two other surface states agree well with those observed on the Ca/Si(1 1 1)-(3 × 2) surface, whose basic structure is the same as that of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. Taking these results into account, we conclude that the five surface states observed in the band gap originate from the orbitals of Si atoms that form a honeycomb-chain-channel structure.  相似文献   

14.
The 3 × 3 and √3 × √3 reconstructions on 6H-SiC(0 0 0 1) surface were obtained via depositing thin silicon layer and annealing it in ultrahigh vacuum (without Si flux). Rocking curves of reflection high energy electron diffraction (RHEED) were measured for integer and fractional order beams. They were fitted with results of many-beam calculation on the basis of dynamical theory of RHEED to determine structural parameters. For √3 × √3 superstructure, it was found that the occupancy of adatom states is 0.45 (incomplete coverage). In the sequence of Si-C double layers ABCACB, the lattice is terminated with the layer A. For 3 × 3 superstructure, the rocking curves support the model with twisted tetra-cluster. The best-fit twist is as half of that predicted in ab initio calculations; it is due to limited source of Si atoms to build up the superstructure. Larger twist correlates with higher occupancy of corner sites and with slower cooling rate of the sample after annealing.  相似文献   

15.
Surface chemistry of nitrobenzene on Si(1 0 0)-2 × 1 has been investigated using multiple internal reflection Fourier-transform infrared spectroscopy (MIR-FTIR), Auger electron spectroscopy (AES) and thermal desorption mass spectrometry. Molecular adsorption of nitrobenzene at submonolayer coverages is dominating at cryogenic temperatures (100 K). As the surface temperature is increased to 160 K, chemical reaction involving nitro group occurs, while the phenyl entity remains intact. Thus, a barrier of approximately 40.8 kJ/mol is established for the interaction of the nitro group of nitrobenzene with the Si(1 0 0)-2 × 1 surface. Further annealing of the silicon surface leads to the decomposition of nitrobenzene. The concentration of nitrogen and oxygen remains constant on a surface within the temperature interval studied here. AES studies also suggest that the majority of carbon-containing products remain bound to the surface at temperatures as high as 1000 K. The only chemical reaction leading to the release of the gaseous products is benzene formation around 670 K. The amount of benzene accounts only for a few percent of the surface species, while the rest of the phenyl groups connected to the silicon surface via a nitrogen linker remain stable even at elevated temperatures, opening an opportunity for stable surface coatings.  相似文献   

16.
We studied the structures and the phase transition of Pb/Ge(1 1 1) surface by using the reflection high-energy positron diffraction. The surface structures at 60 K and 293 K have the 3 × 3 and √3 × √3 periodicities, respectively. The rocking curves measured at both temperatures are nearly the same. This indicates that the equilibrium positions of the surface atoms do not change according to the phase transition. From the analysis of the rocking curve based on the dynamical diffraction theory, we found that at both temperatures the surface structures are composed of the so-called one-up and two-down model. The 3 × 3-√3 × √3 phase transition for the Pb/Ge(1 1 1) surface is interpreted in terms of order-disorder transition.  相似文献   

17.
Laterally resolved topography and Contact Potential Difference (CPD) images, acquired during the exposure of clean Si(1 1 1) 7 × 7 to molecular oxygen at room temperature, show a heterogeneous oxidation process, without preference for step edges. The increase of and lateral changes in work function variations show that the CPD variations of the final oxide film are related to the silicon/oxide interface. The molecular Höfer precursor has a pronounced influence on the development of the interface bonding.  相似文献   

18.
We investigate the low-coverage regime of vanadium deposition on the Si(1 1 1)-7 × 7 surface using a combination of scanning tunnelling microscopy (STM) and density-functional theory (DFT) adsorption energy calculations. We theoretically identify the most stable structures in this system: (i) substitutional vanadium atoms at silicon adatom positions; (ii) interstitial vanadium atoms between silicon adatoms and rest atoms; and (iii) interstitial vanadium - silicon adatom vacancy complexes. STM images reveal two simple vanadium-related features near the Si adatom positions: bright spots at both polarities (BB) and dark spots for empty and bright spots for filled states (DB). We relate the BB spots to the interstitial structures and the DB spots to substitutional structures.  相似文献   

19.
Using a first-principles pseudopotential technique, we have investigated the adsorption of CH3OH on the Si(0 0 1) surface. We have found that, in agreement with the overall experimental picture, the most probable chemisorption path for methanol adsorption on silicon (0 0 1) is as follows: the gas phase CH3OH adsorbs molecularly to the electrophilic surface Si atom via the oxygen atom and then dissociates into Si-OCH3 and H, bonded to the electrophilic and nucleophilic surface silicon dimer atoms, respectively. Other possible adsorption models and dissociation paths are also discussed. Our calculations also suggest that the most probable methanol coverage is 0.5 ML, i.e., one molecule per Si-Si dimer, in agreement with experimental evidences. The surface atomic and electronic structures are discussed and compared to available theoretical and experimental data. In addition, we propose that a comparison of our theoretical STM images and calculated vibrational modes for the adsorbed systems with detailed experimental investigations could possibly confirm the presented adsorption picture.  相似文献   

20.
The first stages of acetylene reaction with the Si(1 1 1)7 × 7 reconstructed surface kept at 600 °C are studied by recording scanning tunneling microscopy (STM) images during substrate exposure at a C2H2 pressure of 2 × 10−4 Pa (2 × 10−2 mbar). We observed the progressive substitution of the 7 × 7 reconstruction with a carbon induced Si(1 1 1)√3×√3R30° reconstruction characterized by an atomic distance of 0.75 ± 0.02 nm, very close to that of the silicon 7 × 7 adatoms. This means that a carbon enrichment of the silicon outermost layers occurs giving rise to the formation of a Si-C phase different from the √3×√3R30° reconstruction typical of Si terminated hexagonal SiC(0 0 0 1) surface with an atomic distance of 0.53 nm. To explain STM images, we propose a reconstruction model which involves carbon atoms in T4 and/or S5 sites, as occurring for B doped Si(1 1 1) surface. Step edges and areas around the silicon surface defects are the first regions involved in the reaction process, which spreads from the upper part of the step edges throughout the terraces. Step edges therefore, progressively flakes and this mechanism leads, for the highest exposures, to the formation of large inlets which makes completely irregular the straight edge typical of the Si(1 1 1)7 × 7 terraces. These observations indicate that there occurs an atomic diffusion like that driving the meandering effect. Finally, the formation of a few crystallites is shown also at the lowest acetylene exposures. This is the first STM experiment showing the possibility to have carbon incorporation in a Si(1 1 1) matrix for higher amounts than expected, at least up to 1/6 of silicon atomic layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号