首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In spite of extensive efforts, even the most experienced laboratories dealing with isotopic measurements of atmospheric CO2 still suffer from poor inter-laboratory consistency. One of the complicating factors of these isotope measurements is the presence of N2O, giving rise to mass overlap in the isotope ratio mass spectrometer (IRMS). The aim of the experiment reported here has been twofold: first, the re-establishment of the correction for 'mechanical' interference of N2O in the IRMS, along with its variability and drift, and the best way to quantitatively determine the correction factors. Second, an investigation into secondary effects, i.e. the influence of N2O admitted with the CO2 sample on the "cross contamination" between sample and (pure CO2) working gas. To make the suspected effects better detectable, isotopically enriched CO2 gas with different concentrations of N2O has been measured for the first time. No evidence of secondary effects was observed, from which we conclude that N2O is not a major player in the inter-laboratory consistency problems. Still, we also found that the determination of the 'mechanical' N2O correction needs to be very carefully determined for each individual IRMS, and should be periodically re-determined. We show that the determination of the correction should be performed using CO2/N2O mixtures with concentration ratios around that of the atmosphere, as the extrapolation from pure gas end member behaviour will give erroneous results due to non-linearities. For our IRMS, a VG SIRA series II, we find a correction of 0.23 per thousand for delta45CO2 and 0.30 per thousand for delta46CO2 of atmospheric samples, (with 0.85 per thousand mixing ratio). This implies that the relative ionisation efficiency (E) value associated with this machine is 0.75.  相似文献   

2.
To obtain accurate values of delta(13)C(CO(2)) and delta(18)O(CO(2)) on environmental CO(2) by mass spectrometry, the raw isotope data must be corrected for the isobaric N(2)O contribution. This is one of the analytical problems limiting inter-laboratory delta(13)C(CO(2)) data consistency. The key parameter, the N(2)O relative ionisation efficiency (E(N2O)), cannot be determined with sufficient accuracy by direct measurements of pure N(2)O. The determination of (E(N2O)) by analyses on N(2)O--CO(2) mixtures of known isotope composition and mixing proportions has been recently suggested. In this work we propose a new method of N(2)O correction which uses the m/z 30 signal as a measure of the N(2)O/CO(2) ratio, so that determinations of (E(N2O)) and N(2)O content are not required. The method uses the fact that fragment-ion spectra of N(2)O and CO(2) are very specific. The formalism of the correction is considered. Various tests demonstrate that the new method is robust, stable and easy to implement in practice. The effective value (E(N2O)) (the key parameter for the new correction) has to be calibrated on known N(2)O--CO(2) mixtures by measuring (30)R signals only. The method accuracy we presently achieved is around 2.5% and any error which appears to come mostly from our N(2)O--CO(2) mixture preparation. Based on our tests and error considerations, the error of the proposed method that may be achieved is as low as +/-1.5% (relative to the correction magnitude). For tropospheric CO(2) this means +/-0.003 per thousand and +/-0.005 per thousand for delta(13)C(CO(2)) and delta(18)O(CO(2)), respectively. The proposed method may be valuable for small samples where no separate N(2)O determinations are available (e.g. ice core samples and CF-IRMS measurements) as well as for determination of (E(N2O)) and testing the 'traditional' N(2)O correction based on mass balance calculations.  相似文献   

3.
In this paper we present an overview of the present knowledge relating to methods that avoid interference of N2O on delta13C and delta18O measurements of CO2. The main focus of research to date has been on atmospheric samples. However, N2O is predominantly generated by soil processes. Isotope analyses related to soil trace gas emissions are often performed with continuous flow isotope ratio mass spectrometers, which do not necessarily have the high precision needed for atmospheric research. However, it was shown by using laboratory and field samples that a correction to obtain reliable delta13C and delta18O values is also required for a commercial continuous flow isotope ratio mass spectrometer. The capillary gas chromatography column of the original equipment was changed to a packed Porapak Q column. This adaptation resulted in an improved accuracy and precision of delta13C (standard deviation(Ghent): from 0.2 to 0.08 per thousand; standard deviation(Lincoln): from 0.2 to 0.13 per thousand) of CO2 for N2O/CO2 ratios up to 0.1. For delta18O there was an improvement for the standard deviation measured at Ghent University (0.13 to 0.08 per thousand) but not for the measurements at Lincoln University (0.08 to 0.23 per thousand). The benefits of using the packed Porapak Q column compared with the theoretical correction method meant that samples were not limited to small N(2)O concentrations, they did not require an extra N2O concentration measurement, and measurements were independent of the variable isotopic composition of N2O from soil.  相似文献   

4.
The stable isotope composition of nmol size gas samples can be determined accurately and precisely using continuous flow isotope ratio mass spectrometry (IRMS). We have developed a technique that exploits this capability in order to measure delta13C and delta18O values and, simultaneously, the concentration of CO2 in sub-mL volume soil air samples. A sampling strategy designed for monitoring CO2 profiles at particular locations of interest is also described. This combined field and laboratory technique provides several advantages over those previously reported: (1) the small sample size required allows soil air to be sampled at a high spatial resolution, (2) the field setup minimizes sampling times and does not require powered equipment, (3) the analytical method avoids the introduction of air (including O2) into the mass spectrometer thereby extending filament life, and (4) pCO2, delta13C and delta18O are determined simultaneously. The reproducibility of measurements of CO2 in synthetic tank air using this technique is: +/-0.08 per thousand (delta13C), +/-0.10 per thousand (delta18O), and +/-0.7% (pCO2) at 5550 ppm. The reproducibility for CO2 in soil air is estimated as: +/-0.06 per thousand (delta13C), +/-0.06 per thousand (delta18O), and +/-1.6% (pCO2). Monitoring soil CO2 using this technique is applicable to studies concerning soil respiration and ecosystem gas exchange, the effect of elevated atmospheric CO2 (e.g. free air carbon dioxide enrichment) on soil processes, soil water budgets including partitioning evaporation from transpiration, pedogenesis and weathering, diffuse solid-earth degassing, and the calibration of speleothem and pedogenic carbonate delta13C values as paleoenvironmental proxies.  相似文献   

5.
Two alternative approaches for the calibration of the intramolecular nitrogen isotope distribution in nitrous oxide using isotope ratio mass spectrometry have yielded a difference in the 15N site preference (defined as the difference between the delta15N of the central and end position nitrogen in NNO) of tropospheric N2O of almost 30 per thousand. One approach is based on adding small amounts of labeled 15N2O to the N2O reference gas and tracking the subsequent changes in m/z 30, 31, 44, 45 and 46, and this yields a 15N site preference of 46.3 +/- 1.4 per thousand for tropospheric N2O. The other involves the synthesis of N2O by thermal decomposition of isotopically characterized ammonium nitrate and yields a 15N site preference of 18.7 +/- 2.2 per thousand for tropospheric N2O. Both approaches neglect to fully account for isotope effects associated with the formation of NO+ fragment ions from the different isotopic species of N2O in the ion source of a mass spectrometer. These effects vary with conditions in the ion source and make it impossible to reproduce a calibration based on the addition of isotopically enriched N2O on mass spectrometers with different ion source configurations. These effects have a much smaller impact on the comparison of a laboratory reference gas with N2O synthesized from isotopically characterized ammonium nitrate. This second approach was successfully replicated and leads us to advocate the acceptance of the site preference value 18.7 +/- 2.2 per thousand for tropospheric N2O as the provisional community standard until further independent calibrations are developed and validated. We present a technique for evaluating the isotope effects associated with fragment ion formation and revised equations for converting ion signal ratios into isotopomer ratios.  相似文献   

6.
The determination of delta18O values in CO2 at a precision level of +/-0.02 per thousand (delta-notation) has always been a challenging, if not impossible, analytical task. Here, we demonstrate that beyond the usually assumed major cause of uncertainty - water contamination - there are other, hitherto underestimated sources of contamination and processes which can alter the oxygen isotope composition of CO2. Active surfaces in the preparation line with which CO2 comes into contact, as well as traces of air in the sample, can alter the apparent delta18O value both temporarily and permanently. We investigated the effects of different surface materials including electropolished stainless steel, Duran glass, gold and quartz, the latter both untreated and silanized. CO2 frozen with liquid nitrogen showed a transient alteration of the 18O/16O ratio on all surfaces tested. The time to recover from the alteration as well as the size of the alteration varied with surface type. Quartz that had been ultrasonically cleaned for several hours with high purity water (0.05 microS) exhibited the smallest effect on the measured oxygen isotopic composition of CO2 before and after freezing. However, quartz proved to be mechanically unstable with time when subjected to repeated large temperature changes during operation. After several days of operation the gas released from the freezing step contained progressively increasing trace amounts of O2 probably originating from inclusions within the quartz, which precludes the use of quartz for cryogenically trapping CO2. Stainless steel or gold proved to be suitable materials after proper pre-treatment. To ensure a high trapping efficiency of CO2 from a flow of gas, a cold trap design was chosen comprising a thin wall 1/4" outer tube and a 1/8" inner tube, made respectively from electropolished stainless steel and gold. Due to a considerable 18O specific isotope effect during the release of CO2 from the cold surface, the thawing time had to be as long as 20 min for high precision delta18O measurements. The presence of traces of air in almost all CO2 gases that we analyzed was another major source of error. Nitrogen and oxygen in the ion source of our mass spectrometer (MAT 252, Finnigan MAT, Bremen, Germany) give rise to the production of NO2 at the hot tungsten filament. NO2+ is isobaric with C16O18O+ (m/z 46) and interferes with the delta18O measurement. Trace amounts of air are present in CO2 extracted cryogenically from air at -196 degrees C. This air, trapped at the cold surface, cannot be pumped away quantitatively. The amount of air present depends on the surface structure and, hence, the alteration of the measured delta18O value varies with the surface conditions. For automated high precision measurement of the isotopic composition of CO2 of air samples stored in glass flasks an extraction interface ('BGC-AirTrap') was developed which allows 18 analyses (including standards) per day to be made. For our reference CO2-in-air, stored in high pressure cylinders, the long term (>9 months) single sample precision was 0.012 per thousand for delta13C and 0.019 per thousand for delta18O.  相似文献   

7.
A new technique for measuring CO(2) concentration in air samples, based on mass spectrometry, is described as an alternative to the common gas chromatographic method. Using a dual inlet isotope ratio mass spectrometer (IRMS), the ratio of the abundances of the m/z peaks 44 and 28 is determined. The precision of measurements (standard deviation <3 ppmv) is generally as good as the analysis with gas chromatography for small air samples (<1 ml STP of air). A major advantage of this new method is the possibility of parallel elemental and isotopic measurements of many air components. The technique is further improved by new wide mass range mass spectrometers allowing simultaneous intensity measurements of several m/z values between 28 and 44, resulting in an uncertainty of <0.5 ppm. The precision is somewhat limited by the production of N(2)O and NO(2) from N(2) and O(2) in the ion source, which accounts for about half of the signal strength at m/z 44. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Recent insights into fractionation during dark respiration and rapid dynamics in isotope signatures of leaf- and ecosystem-respired CO(2) indicate the need for new methods for high time-resolved measurements of the isotopic signature of respired CO(2) (delta(13)C(res)). We present a rapid and simple method to analyse delta(13)C(res) using an in-tube incubation technique and an autosampler for small septum-capped vials. The effect of storage on the delta(18)O and delta(13)C ratios of ambient CO(2) concentrations was tested with different humidity and temperatures. delta(13)C ratios remained stable over 72 h, whereas delta(18)O ratios decreased after 24 h. Storage at 4 degrees C improved the storage time for delta(18)O. Leaves or leaf discs were incubated in the vials, flushed with CO(2)-free air and respired CO(2) was automatically sampled within 5 min on a microGas autosampler interfaced to a GV-Isoprime isotope ratio mass spectrometer. Results were validated by simultaneous on-line gas-exchange measurements of delta(13)C(res) of attached leaves. This method was used to evaluate the short-term (5-60 min) and diurnal dynamics of delta(13)C(res) in an evergreen oak (Quercus ilex) and a herb (Tolpis barbata). An immediate depletion of 2-4 per thousand from the initial delta(13)C(res) value occurred during the first 30 min of darkening. Q. ilex exhibited further a substantial diurnal enrichment in delta(13)C(res) of 8 per thousand, followed by a progressive depletion during the night. In contrast, T. barbata did not exhibit a distinct diurnal pattern. This is in accordance with recent theory on fractionation in metabolic pathways and may be related to the different utilisation of the respiratory substrate in the fast-growing herb and the evergreen oak. These data indicate substantial and rapid dynamics (within minutes to hours) in delta(13)C(res), which differed between species and probably the growth status of the plant. The in-tube incubation method enables both high time-resolved analysis and extensive sampling across different organs, species and functional types.  相似文献   

9.
Past atmospheric composition can be reconstructed by the analysis of air enclosures in polar ice cores which archive ancient air in decadal to centennial resolution. Due to the different carbon isotopic signatures of different methane sources high-precision measurements of delta13CH4 in ice cores provide clues about the global methane cycle in the past. We developed a highly automated (continuous-flow) gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) technique for ice core samples of approximately 200 g. The methane is melt-extracted using a purge-and-trap method, then separated from the main air constituents, combusted and measured as CO2 by a conventional isotope ratio mass spectrometer. One CO2 working standard, one CH4 and two air reference gases are used to identify potential sources of isotope fractionation within the entire sample preparation process and to enhance the stability, reproducibility and accuracy of the measurement. After correction for gravitational fractionation, pre-industrial air samples from Greenland ice (1831 +/- 40 years) show a delta13C(VPDB) of -49.54 +/- 0.13 per thousand and Antarctic samples (1530 +/- 25 years) show a delta13C(VPDB) of -48.00 +/- 0.12 per thousand in good agreement with published data.  相似文献   

10.
Hill CA  Thomas CL 《The Analyst》2003,128(1):55-60
A pulsed corona discharge ionisation source, a candidate replacement for 63Ni ionisation sources for ion mobility spectrometry, is described along with a new design of ion mobility spectrometer-mass spectrometer. Preliminary research on the characterisation of the reactant ion peaks associated with the use of this ionisation source was undertaken by assembling a pulsed corona discharge ionisation switchable high-resolution ion mobility spectrometer-mass spectrometer to enable the mobility spectra, atmospheric chemical ionisation mass spectra and selected-mass mobility spectra to be obtained. With ammonia doping at 2.39 mg m(-3) in air and a water content of approximately 80 mg m(-3) in the positive mode the observed response was attributable to the formation of 1(H2O)(n)NH4]+ and [(H2O)n(NH3)NH4]+ in the reaction region. The observed responses in the negative mode were more complex with evidence for the formation [(H2O)(n)O2]-, [(H2O)(n)CO3]-, [(H2O)(n)HCO3]-, [(H2O)(n)CO4]- and [(H2O)(n)NO3]-. The responses due to these species were clearly discernible in the resultant mobility spectra, with enough oxygen-based species formed to support analytically useful responses.  相似文献   

11.
On-line determination of the oxygen isotopic composition (delta(18)O value) in organic and inorganic samples is commonly performed using a thermal conversion elemental analyzer (TC-EA) linked to a continuous flow isotope ratio mass spectrometry (IRMS) system. Accurate delta(18)O analysis of N-containing compounds (like nitrates) by TC-EA-IRMS may be complicated because of interference of the N(2) peak on the m/z 30 signal of the CO peak. In this study we evaluated the effectiveness of two methods to overcome this interference which do not require any hardware modifications of standard TC-EA-IRMS systems. These methods were (1) reducing the amount of N(2) introduced into the ion source through He dilution of the N(2) peak and (2) an improved background correction on the CO m/z 30 sample peak integration.Our results show that He dilution is as effective as diverting the N(2) peak in order to eliminate this interference. We conclude that the He-dilution technique is a viable method for the delta(18)O analysis of nitrates and other N-containing samples (which are not routinely measured using He dilution) using TC-EA-IRMS, since it can easily be programmed in the standard software of IRMS systems. With the He-dilution technique delta(18)O values of the nitrate isotope standards USGS34, IAEA-N3 and USGS35 were measured using the shortest possible traceability chain to the VSMOW-SLAP scale, and the results were -28.1 +/- 0.1 per thousand, +25.5 +/- 0.1 per thousand and +57.5 +/- 0.2 per thousand, respectively. An improved background correction was also an effective method, but required manual correction of the raw data.  相似文献   

12.
The application of (13)C/(12)C in ecosystem-scale tracer models for CO(2) in air requires accurate measurements of the mixing ratios and stable isotope ratios of CO(2). To increase measurement reliability and data intercomparability, as well as to shorten analysis times, we have improved an existing field sampling setup with portable air sampling units and developed a laboratory setup for the analysis of the delta(13)C of CO(2) in air by isotope ratio mass spectrometry (IRMS). The changes consist of (a) optimization of sample and standard gas flow paths, (b) additional software configuration, and (c) automation of liquid nitrogen refilling for the cryogenic trap. We achieved a precision better than 0.1 per thousand and an accuracy of 0.11 +/- 0.04 per thousand for the measurement of delta(13)C of CO(2) in air and unattended operation of measurement sequences up to 12 h.  相似文献   

13.
This paper discusses a simple method to determine 17O isotope excess or deficiency ('mass-independent isotopic composition') in CO2 gas. When applying conventional mass spectrometry of CO2 (m/z 44, 45 and 46) to determine the 17O/16O ratio, the 13C/12C ratio has to be established separately. This can be achieved by analysing an aliquot of sample CO2 before and after subjecting it to oxygen isotope exchange with a pool of oxygen with 'normal' 17O/16O ratio, i.e. with Delta17O approximately equal to delta17O-0.516 x delta18O = 0. Cerium oxide has been shown to be practically well suited for the exchange of CO2 oxygen; the reagent is safe and does not produce any contamination. The CO2-CeO2 exchange reaction has 99.8 +/- 0.7% recovery yield. At 650 degrees C this reaction reaches equilibrium in 30 min and, as tested, results in complete oxygen replacement. Delta17O determinations depend on accuracy of CO2 delta measurements: the repeatability of +/-0.015 per thousand (1sigma) in delta(45)R and delta(46)R determination relative to the working reference results in an error of Delta17O as small as +/-0.33 per thousand. Such a precision is sufficient for Delta17O determination in stratospheric CO2. The calculated Delta17O value systematically depends on absolute 17R and 13R ratios in isotopic reference materials, which are presently not yet known with certainty (the 17R value is most important), and may be inadequate for 17O-correction with a = 0.516. Within the present uncertainty, Delta17O determined in 17O-enriched CO2 agrees with the value directly measured in the enriched O2 from which this CO2 was produced. Besides Delta17O determination, investigated CO2-CeO2 equilibration may have several other implications. Fast, complete isotopic exchange of CO2 by reaction with CeO2 may also be employed to get reproducible 17O-correction and, hence, to better monitor small delta13C shifts and to isotopically equilibrate mixtures of CO2 gases.  相似文献   

14.
艾国民  郑海燕  张敏  刘志培 《分析化学》2011,39(8):1141-1146
以好氧反硝化菌-产碱杆菌(Alcaligenes faecalis)在15N-KN03标记反硝化培养下所产气体与培养管中空气的混合气体为分析对象,在样品中N2/O2,CO2,N2O,H2O基线分离的基础上,利用气相色谱-同位素比质谱对混合气体中N2进行高精密度的δ15N分析,同时利用气相色谱-质谱联用的选择离子模式对混...  相似文献   

15.
A simple modification to a commercially available gas chromatograph isotope ratio mass spectrometer (GC/IRMS) allows rapid and precise determination of the stable isotopes ((13)C and (18)O) of CO(2) at ambient CO(2) concentrations. A sample loop was inserted downstream of the GC injection port and used to introduce small volumes of air samples into the GC/IRMS. This procedure does not require a cryofocusing step and significantly reduces the analysis time. The precisions for delta(13)C and delta(18)O of CO(2) at ambient concentration were +/-0.164 and +/-0.247 per thousand, respectively. This modified GC/IRMS was used to test the effects of storage on the (18)O and (13)C isotopic ratios of CO(2) at ambient concentrations in four container types. On average, the change in the (13)C-CO(2) and (18)O-CO(2) ratios of samples after one week of storage in glass vials equipped with butyl rubber stoppers (Bellco Glass Inc.) were depleted by 0.12 and by 0.20 per thousand, respectively. The (13)C ratios in aluminum canisters (Scotty II and IV, Scott Specialty Gasses) after one month of storage were depleted, on average, by 0.73 and 2.04 per thousand, respectively, while the (18)O ratios were depleted by 0.38 and 1.20 per thousand for the Scotty II and IV, respectively. After a month of storage in electropolished containers (Summa canisters, Biospheric Research Corporation), the (13)C-CO(2) and (18)O-CO(2) ratios were depleted, on average, by 0.26 and enriched by 0.30 per thousand, respectively, close to the precision of measurements. Samples were collected at a mature hardwood forest for CO(2) concentration determination and isotopic analysis. A comparison of CO(2) concentrations determined with an infrared gas analyzer and from sample voltages, determined on the GC/IRMS concurrent with the isotopic analysis, indicated that CO(2) concentrations can be determined reliably with the GC/IRMS technique. The (13)C and (18)O ratios of nighttime ecosystem-respired CO(2), determined from the intercept of Keeling plots, were -26.11 per thousand (V-PDB) and -8.81 per thousand (V-PDB-CO(2)), respectively.  相似文献   

16.
Gas isotope ratio mass spectrometers usually measure ion current ratios of molecules, not atoms. Often several isotopologues contribute to an ion current at a particular mass‐to‐charge ratio (m/z). Therefore, corrections have to be applied to derive the desired isotope ratios. These corrections are usually formulated in terms of isotope ratios (R), but this does not reflect the practice of measuring the ion current ratios of the sample relative to those of a reference material. Correspondingly, the relative ion current ratio differences (expressed as δ values) are first converted into isotopologue ratios, then into isotope ratios and finally back into elemental δ values. Here, we present a reformulation of this data reduction procedure entirely in terms of δ values and the ‘absolute’ isotope ratios of the reference material. This also shows that not the absolute isotope ratios of the reference material themselves, but only product and ratio combinations of them, are required for the data reduction. These combinations can be and, for carbon and oxygen have been, measured by conventional isotope ratio mass spectrometers. The frequently implied use of absolute isotope ratios measured by specially calibrated instruments is actually unnecessary. Following related work on CO2, we here derive data reduction equations for the species O2, CO, N2O and SO2. We also suggest experiments to measure the required absolute ratio combinations for N2O, SO2 and O2. As a prelude, we summarise historic and recent measurements of absolute isotope ratios in international isotope reference materials. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
It is well known that N(2) in the ion source of a mass spectrometer interferes with the CO background during the δ(18)O measurement of carbon monoxide. A similar problem arises with the high-temperature conversion (HTC) analysis of nitrogenous O-bearing samples (e.g. nitrates and keratins) to CO for δ(18)O measurement, where the sample introduces a significant N(2) peak before the CO peak, making determination of accurate oxygen isotope ratios difficult. Although using a gas chromatography (GC) column longer than that commonly provided by manufacturers (0.6 m) can improve the efficiency of separation of CO and N(2) and using a valve to divert nitrogen and prevent it from entering the ion source of a mass spectrometer improved measurement results, biased δ(18)O values could still be obtained. A careful evaluation of the performance of the GC separation column was carried out. With optimal GC columns, the δ(18)O reproducibility of human hair keratins and other keratin materials was better than ± 0.15 ‰ (n=5; for the internal analytical reproducibility), and better than ± 0.10 ‰ (n=4; for the external analytical reproducibility).  相似文献   

18.
To calculate delta(13)C from raw CO(2) isotope data, the ion beam ratio of m/z 45 to 44 is corrected for the contribution arising from the contribution of (17)O-bearing molecules. First, a review on the current state of (17)O-corrections for CO(2) mass spectrometry is presented. The three correction algorithms that are generally in use, however, do produce biased delta(13)C values, and the bias is actually larger than the precision of modern isotope ratio mass spectrometers. The origin of this bias is twofold: different values for (17)R(VPDB-CO2) as well as different values for lambda are used in the correction algorithms. Despite both values being of high importance, large discrepancies between the absolute values published for (17)R(VPDB-CO2) appear to be the main reason for the delta(13)C biases. Next, the question of how to choose the value of lambda to best be used is considered. Natural (e.g. tropospheric) CO(2) as well as primary reference materials (PDB and NBS-19), having been in isotope exchange with water, are assumed to lie on the fractionation line for waters. On this ground, lambda = 0.5281 +/- 0.0015, as determined for waters (Meijer and Li, Isot. Environ. Health Stud., 1998; 34: 349-369), is suggested to be a base for the (17)O-correction algorithm. Finally, an approach to determine the absolute value for (17)R(VPDB-CO2), based on data of relative isotope measurements on two CO(2) gases having a large (17)O difference, is discussed and algebraic formulas are considered. Experimental data and new numerical values determined for (17)R(VPDB-CO2) and (17)R(VSMOW) are given in a companion paper.  相似文献   

19.
We have developed an automated, continuous-flow isotope ratio mass spectrometry (CF-IRMS) system for the analysis of delta(13)C, delta(18)O, and CO(2) concentration (micromol mol(-1)) ([CO(2)]) from 2 mL of atmospheric air. Two replicate 1 mL aliquots of atmospheric air are sequentially sampled from fifteen 100 mL flasks. The atmospheric sample is inserted into a helium stream and sent through a gas chromatograph for separation of the gases and subsequent IRMS analysis. Two delta(13)C and delta(18)O standards and five [CO(2)] standards are run with each set of fifteen samples. We obtained a precision of 0.06 per thousand, 0.11 per thousand, and 0.48 micromol mol(-1) for delta(13)C, delta(18)O, and [CO(2)], respectively, by analyzing fifty 100 mL samples filled from five cylinders with a [CO(2)] range of 275 micromol mol(-1). Accuracy was determined by comparison with established methods (dual-inlet IRMS, and nondispersive infrared gas analysis) and found to have a mean offset of 0.00 per thousand, -0.09 per thousand, and -0.26 micromol mol(-1) for delta(13)C and delta(18)O, and [CO(2)], respectively.  相似文献   

20.
Sulfur (S) isotope ratios of thoroughly dried organic samples were measured by direct thermal decomposition in an elemental analyzer coupled to an isotope ratio mass spectrometer in continuous flow mode (EA-CF-IRMS). For organic samples of up to 13 mg weight and with total S contents of more than 10 microg, the reproducibility of the delta34S(organic) values was +/-0.4 per thousand or better. However, the delta34S values of organic samples measured directly by online EA-CF-IRMS analysis were between 0.3 and 2.9 per thousand higher than those determined on BaSO4 precipitates produced by Parr Bomb oxidation from the same sample material. Our results suggest that structural oxygen in organic samples influences the oxygen isotope ratios of the SO2 produced from organic samples. Consequently, SO2 generated from organic samples appears to have different 18O/16O ratios than SO2 generated from BaSO4 precipitates and inorganic reference materials, resulting in a deviation from the true delta34S values because of 32S16O18O contributions to mass 66. It was shown that both the amount of structural oxygen in the organic sample, and the difference of the oxygen isotope ratios between organic samples and tank O2, influenced the magnitude of the observed deviation from the true delta34S value after direct EA-CF-IRMS analysis of organic samples. Suggestions are made to correct the difference between measured delta34S(organic) and true delta34S values in order to obtain not only reproducible, but also accurate S isotope ratios for organic materials by EA-CF-IRMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号