首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Stemonae radix (Stemona tuberosa Lour, Bai Bu) is a traditional Chinese medicinal (TCM) plant known for its antitussive and anti‐ectoparasitic activity; however, the in vivo pharmacokinetic of its multiple bioactive components remains unknown. In this article, UPLC‐Q‐TOF‐high‐definition mass spectrometry (HDMS) coupled with automated data analysis MetaboLynx? software together were first developed to screen the potentially bioactive components in the rat plasma after oral administration of Stemonae radix. Time course of the absorbed components of Stemonae radix was built to evaluate pharmacokinetic behaviors. This rapid automated analysis method was successfully applied for identification, screening, and monitoring of the 28 constituents absorbed and metabolized studies of Stemonae radix after oral administration to rats. The results showed that the ongoing changes of 28 constituents including eight parent compounds and 20 metabolites in vivo were observed to find biomarkers. From the angle of behavior in vivo, it suggested that croomine and tuberostemonine would be potential efficacy markers. This work also demonstrated that the pharmacokinetics‐based UPLC‐Q‐TOF‐HDMS can provide a reliable means of identifying and screening potentially bioactive components contributing to pharmacological effects of medicinal herbs, and to better clarify its action mechanism, further prospecting natural products in the search for new leads in drug discovery.  相似文献   

3.
Root cortex of Paeonia suffruticosa Andrews (Paeoniaceae), known as Moutan Cortex (MC), is known to have anti‐allergic and anti‐inflammatory properties. However, the constituents absorbed into blood after oral administration of MC remain unknown. A sensitive and rapid method by ultra‐high‐pressure liquid chromatography–electrospray ionization–quadrupole‐time‐of‐flight mass spectrometry (UPLC‐ESI‐Q‐TOF‐MS) technology and the MetaboLynxTM software combined with multiple data processing approach (Mdpa) was established to investigate the absorbed constituents in rats after oral administration of MC, providing unique high‐throughput capabilities for drug metabolism study. A hyphenated electrospray ionization and quadrupole‐time‐of‐flight analyzer was used for the determination of accurate mass of the fragment ion in negative mode, with excellent MS mass accuracy and enhanced data acquisition. This rapid automated analysis method was successfully applied for screening and identification of the constituents absorbed and metabolized studies of MC after oral administration to rats. A total of 46 peaks were obtained from MC, 41 of which were tentatively characterized. In the VIP‐plot of orthogonal partial least‐squares discriminant analysis, 23 interesting ions in serum samples were extracted, and 16 parent components and seven metabolites were detected in vivo. The integrative serum pharmacochemistry technique, UPLC‐ESI‐Q‐TOF‐MS, and Mdpa method were successfully applied for rapid discovery of multiple components from MC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Gigantol is a typical bibenzyl compound isolated from Dendrobii Caulis that has been widely used as a medicinal herb in China for the treatment of diabetic cataract, cancer and arteriosclerosis obliterans and as a tonic for stomach nourishment, saliva secretion promotion and fever reduction. However, few studies have been carried out on its in vivo metabolism. In the present study, a rapid and sensitive method based on ultra‐performance liquid chromatography/electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UPLC‐Q/TOF‐MS) in positive ion mode was developed and applied to identify the metabolites of gigantol in rat urine after a single oral dose (100 mg/kg). Chromatographic separation was performed on an Acquity UPLC HSS T3 column (100 × 2.1 mm i. d., 1.8 µm) using acetonitrile and 0.1% aqueous formic acid as mobile phases. A total of 11 metabolites were detected and identified as all phase II metabolites. The structures of the metabolites were identified based on the characteristics of their MS, MS2 data and chromatographic retention times. The results showed that glucuronidation is the principal metabolic pathway of gigantol in rats. The newly identified metabolites are useful to understand the mechanism of elimination of gigantol and, in turn, its effectiveness and toxicity. As far as we know, this is the first attempt to investigate the metabolic fate of gigantol in vivo. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, ultraperformance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS) and the MetaboLynx? software combined with mass defect filtering were applied to identity the metabolites of isoquercitrin using an intestinal mixture of bacteria and 96 isolated strains from human feces. The human incubated samples collected for 72 h in the anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF/MS within 10 min. The parent compound and five metabolites were identified by eight isolated strains, including Bacillus sp. 17, Veillonella sp. 23 and 32 and Bacteroides sp. 40, 41, 56, 75 and 88 in vitro. The results indicate that quercetin, acetylated isoquercitrin, dehydroxylated isoquercitrin, hydroxylated quercetin and hydroxymethylated quercetin are the major metabolites of isoquercitrin. Furthermore, a possible metabolic pathway for the biotransformation of isoquercitrin was established in intestinal flora. This study will be helpful for understanding the metabolic route of isoquercitrin and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Helicid is an active natural aromatic phenolic glycoside ingredient originating from a well‐known traditional Chinese herbal medicine and has the significant effects of sedative hypnosis, anti‐inflammatory analgesia and antidepressant. In this study, we analyzed the potential metabolites of Helicid in rats by multiple mass defect filter and dynamic background subtraction in ultra‐high‐performance liquid chromatography–quadrupole time‐of‐flight mass spectrometry (UHPLC‐Q‐TOF‐MS). Moreover, we used a novel data processing method, ‘key product ions’, to rapidly detect and identify metabolites as an assistant tool. MetabolitePilot™ 2.0 software and PeakView™ 2.2 software were used for analyzing metabolites. Twenty metabolites of Helicid (including 15 phase I metabolites and five phase II metabolites) were detected by comparison with the blank samples. The biotransformation route of Helicid was identified as demethylation, oxidation, dehydroxylation, hydrogenation, decarbonylation, glucuronide conjugation and methylation. This is the first study simultaneously detecting and identifying Helicid metabolism in rats employing UHPLC‐Q‐TOF‐MS technology. This experiment not only proposed a method for rapidly detecting and identifying metabolites, but also provided useful information for further study of the pharmacology and mechanism of Helicid in vivo. Furthermore, it provided an effective method for the analysis of other aromatic phenolic glycosides metabolic components in vivo.  相似文献   

7.
8.
Isopropyl 3‐(3,4‐dihydroxyphenyl)‐2‐hydroxypropanoate (IDHP) is an investigational new drug having the capacity for treating ailments in the cardiovascular and cerebrovascular system. In this work, a rapid and sensitive method using high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (HPLC‐ESI‐Q‐TOF‐MS) was developed to reveal the metabolic profile of IDHP in rats after oral administration. The method involved pretreatment of the samples by formic acid–methanol solution (v/v, 5:95), chromatographic separation by an Agilent Eclipse XDB‐C18 column (150 × 4.6 mm i.dx., 5 μm) and online identification of the metabolites by Q‐TOF‐MS equipped with electrospray ionizer. A total of 16 metabolites from IDHP, including four phase I metabolites and 12 phase II metabolites, were detected and tentatively identified from rat plasma, urine and feces. Among these metabolites, Danshensu (DSS), a hydrolysis product of IDHP, could be further transformed to 11 metabolites. These results indicated that DSS was the main metabolite of IDHP in rats and the major metabolic pathways of IDHP in vivo were hydrolysis, O‐methylation, sulfation, glucuronidation and reduction. The results also demonstrated that renal route was the main pathway of IDHP clearance in rat. The present study provided valuable information for better understanding the efficacy and safety of IDHP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
It is an essential requirement to clarify the metabolites of traditional Chinese medicine (TCM) injections, which contain numerous ingredients, to assess their safe and effective use in clinic. Salvianolic acid for injection (SAFI), made from hydrophilic phenolic acids in Salvia miltiorrhiza Bunge, has been widely used for the treatment of cerebrovascular diseases, but information on its metabolites in vivo is still lacking. In the present study, we aimed to holistically characterize the metabolites of the main active ingredients in rat plasma, bile, urine and feces following intravenous administration of SAFI. An ultra‐performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry (UPLC/Q‐TOF‐MS) method was developed. Combining information on retention behaviors, multistage mass spectra and literature data, a total of eight prototypes and 52 metabolites were tentatively characterized. Metabolites originated from rosmarinic acid and salvianolic acid B comprised the majority of identified compounds. Meanwhile, four metabolites derived from salvianolic acid D and five from salvianolic acid B are reported for the first time. This study revealed that methylation, sulfation and glucuronidation were the major metabolic pathways of phenolic acids in SAFI in vivo. Furthermore, the developed UPLC/Q‐TOF‐MS method could also benefit the metabolic investigation of extracts and preparations in TCM with hydrophilic ingredients. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
On‐line ultra‐performance liquid chromatography (UPLC) coupled with diode‐array detection (UPLC/DAD) and electrospray ionization quadrupole time‐of‐flight mass spectrometry (ESI‐Q‐TOF‐MS) were used for separation, identification and structural analyses of saponins in Rhizoma Paridis saponins (RPS) and rat plasma after oral administration of RPS. Thirty steroidal saponins in RPS were identified by comparing their retention time, accurate mass measurement and positive and negative mass spectrometry data with that of reference compounds. The UPLC/Q‐TOF‐MS method was proved to be rapid and efficient in that 30 steroidal saponins, including three kinds of saponins (prototype, pennogenyl and diosgenyl saponins) were tentatively characterized within 6 min. After oral administration of RPS, 21 original saponins were absorbed in RPS‐treated rat plasma. Our results indicated that UPLC/Q‐TOF‐MS is a rapid and effective tool for identification of a series of saponins at trace level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Gentiopicroside (GPS), the main bioactive component in Gentiana scabra Bge., has attracted our attention owing to its high bioactivity, especially the treatment of hepatobiliary disorders. The aglycone form of GPS, a typical secoiridoid glycoside, is considered to be more readily absorbed than its parent drug. This study aimed to identify and characterize the metabolites after GPS incubated with β‐glucosidase in buffer solution at 37°C. Samples of biotransformed solution were collected and analyzed by ultraperformance liquid chromatography (UPLC)/quadrupole–time‐of‐flight mass spectrometry (Q‐TOF MS). A total of four metabolites were detected: two were isolated and elucidated by preparative‐HPLC and NMR techniques, and one of those four is reported for the first time. The mass spectral fragmentation pattern and accurate masses of metabolites were established on the basis of UPLC/Q‐TOF MS analysis. Structure elucidation of metabolites was achieved by comparing their fragmentation pattern with that of the parent drug. A fairly possible metabolic pathway of GPS by β‐glucosidase was proposed. The hepatoprotective activities of metabolites M1 and M2 were investigated and the results showed that their hepatoprotective activities were higher than that of parent drug. Our results provided a meaningful basis for discovering lead compounds from biotransformation related to G. scabra Bge. in traditional Chinese medicine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
In our previous studies, caudatin‐2,6‐dideoxy‐3‐O‐methy‐β‐d‐ cymaropyranoside (CDMC) was for the first time isolated from Cynanchum auriculatum Royle ex Wightand and was reported to possess a wide range of biological activities. However, the routes and metabolites of CDMC produced by intestinal bacteria are not well understood. In this study, ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) technique combined with MetabolynxTMsoftware was applied to analyze metabolites of CDMC by human intestinal bacteria. The incubated samples collected for 48 h in an anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF‐MS within 12 min. Eight metabolites were identified based on MS and MS/MS data. The results indicated that hydrolysis, hydrogenation, demethylation and hydroxylation were the major metabolic pathways of CDMC in vitro. Seven strains of bacteria including Bacillus sp. 46, Enterococcus sp. 30 and sp. 45, Escherichia sp. 49A, sp. 64, sp. 68 and sp. 75 were further identified using 16S rRNA gene sequencing owing to their relatively strong metabolic capacity toward CDMC. The present study provides important information about metabolic routes of CDMC and the roles of different intestinal bacteria in the metabolism of CDMC. Moreover, those metabolites might influence the biological effect of CDMC in vivo, which affects the clinical effects of this medicinal plant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Forsythia suspensa Vahl (Oleaceae) is an important original plant in traditional Chinese medicine. The air‐dried fruits of Forsythia suspensa have long been used to relieve respiratory symptoms. Phillyrin is one of the main chemical constituent of Forsythia suspensa. A clear understanding of the metabolism of phillyrin is very important in rational clinical use and pharmacological research. In this study, the metabolism of phillyrin in rat was investigated for the first time using an ultra‐high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) method. Bile, urine and feces were collected from rats after single‐dose (10 mg/kg) orally administered phillyrin. Liquid–liquid extraction and ultrasonic extraction were used to prepare samples. UPLC‐Q‐TOF‐MS analysis of the phillyrin samples showed that phillyrin was converted to a major metabolite, M26, which underwent deglucosidation, further dehydration and desaturation. A total of 34 metabolites were detected including 30 phase I and four phase II metabolites. The conjugation types and structure skeletons of the metabolites were preliminarily determined. Moreover, 28 new metabolites were reported for the first time. The main biotransformation route of phillyrin was identified as hydrolysis, oxidation and sulfation. These findings enhance our understanding of the metabolism and the real active structures of phillyrin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Lycodine‐type alkaloids have gained significant interest owing to their unique skeletal characteristics and acetylcholinesterase activity. This study established a rapid and reliable method using ultra‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UPLC‐ESI‐Q/TOF‐MS/MS) for comprehensive characterization of lycodine‐type alkaloids for the first time. The lycodine‐type alkaloids were detected successfully from Lycopodiastrum casuarinoides, Huperzia serrata and Phlegmarirus carinatus in seven plants of the Lycopodiaceae and Huperziaceae families, based on the established characteristic MS fragmentation of five known alkaloids. Furthermore, a total of 13 lycodine‐type alkaloids were identified, of which three pairs of isomers were structurally characterized and differentiated. This study further improves mass analysis of lycodine‐type alkaloids and demonstrates the superiority of UPLC with a high‐resolution mass spectrometer for the rapid and sensitive structural elucidation of other trace active compounds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
MS/MS experiment and accurate mass measurement are powerful tools in metabolite identification. However, sometimes these data do not provide enough information to assign an unambiguous structure to a metabolite. In combination with MS techniques, hydrogen/deuterium (H/D) exchange can provide additional information for structural elucidation by determination of the number of exchangeable hydrogen atoms in a structure. In this study, the principal phase I metabolites of iso‐phenylcyclopentylamine in rat bile were identified by high‐performance liquid chromatography with electrospray ionization quadrupole time‐of‐flight mass spectrometry (ESI‐Q‐TOF‐MS). Since N‐oxidation may occur because of the existence of the primary amino group in the structure, it was difficult to differentiate the hydroxylated metabolites from N‐oxides by ESI‐Q‐TOF‐MS alone. Therefore, online H/D exchange technique was applied to solve this problem. Finally, 25 phase I metabolites were detected and structurally described, in which 11 were confirmed to be N‐oxides. This study demonstrated the effectiveness of high‐resolution mass spectrometry in combination with an online H/D exchange technique in rapid identification of drug metabolites, especially in discriminating hydroxylated metabolites from N‐oxides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Shuanghuanglian formula (SF) is a combination of Flos lonicerae japonicae, Radix scutellariae, and Fructus forsythiae, commonly used to treat viral or bacterial infections. However, the constituents absorbed into the blood after oral administration of SF are difficult to determine and thus remain unclear. Here, we report the application of an accurate background subtraction and multiple data processing approach (Bs‐Mpa) for the comprehensive detection of compounds of SF in vivo. A sensitive and reliable ultra‐performance LC coupled with ESI quadrupole TOF MS (UPLC–ESI‐Q‐TOF‐MS) approach coupled with Bs‐Mpa, which is implemented in the Strip tool from UPLC to remove nonrelated ion signals from accurate mass LC–MS data, was established to characterize the chemical constituents and rat metabolites of SF. In the loading plot of the principal component analysis, 68 ions of interest were extracted from blood samples, among them, 39 absorbed prototype components of SF and 29 metabolites were identified in vivo. It is concluded that the integrative Bs‐Mpa method can be successfully applied for the rapid discovery of multiple components from a traditional Chinese medicine. The above challenge was addressed by using the proposed Bs‐Mpa method and it was particularly suitable for applying to the global characterization of the constituents or metabolites in rat blood after oral administration of other well‐known formulae.  相似文献   

18.
Lu F  Sun Q  Bai Y  Bao S  Li X  Yan G  Liu S 《Biomedical chromatography : BMC》2012,26(10):1269-1275
We elucidated the structure and metabolite profile of eleutheroside B, a component derived from the extract of Acanthopanax senticosus Harms, after oral administration of the extract in rats. Samples of rat plasma were collected and analyzed by selective high‐resolution liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC/Q‐TOF MS) automated data analysis method. A total of 11 metabolites were detected: four were identified, and three of those four are reported for the first time here. The three new plasma metabolites were identified on the basis of mass fragmentation patterns and literature reports. The major in vivo metabolic processes associated with eleutheroside B in A. senticosus include demethylation, acetylation, oxidation and glucuronidation after deglycosylation. A fairly comprehensive metabolic pathway was proposed for eleutheroside B. Our results provide a meaningful basis for drug discovery, design and clinical applications related to A. senticosus in traditional Chinese medicine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A rapid and reliable method based on ultra‐performance liquid chromatography (UPLC) coupled with photodiode‐array detection (PDA) and electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (ESI‐Q‐TOF‐MS/MS) has been developed for separation and identification of major constituents in extracts of root bark of Pseudolarix kaempferi Gordon (PKG). Identification of the constituents was carried out by interpretation of their retention times, UV absorption spectra, MS and MS/MS spectra, as well as the data provided by authentic standards and literatures. A total of 20 components were separated in only 8.0 min on a small particle size C18 column (1.7 µm). These components included nine diterpene acids, seven glycosides and four triterpenoids, among which pseudolaric acid C‐Oβ‐D‐glucopyranoside and pseudolaric acid C2Oβ‐D‐glucopyranoside were separated and identified for the first time in this study. Furthermore, the fragmentation patterns of the three types of compounds were elucidated for the first time. This established UPLC‐PDA/Q‐TOF‐MS/MS method is reliable and effective for the separation and identification of the 20 compounds and will be useful for quality control of the crude materials of Pseudolarix kaempferi Gordon and their related preparations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Tianma‐Gouteng granule (TGG), a Chinese herbal formula preparation, is clinically used for the treatment of cardio‐cerebrovascular diseases such as hypertension, cerebral ischaemia, acute ischaemic stroke and Parkinson's disease. Although few reports have been published concerning the absorbed prototype components of TGG, the possible metabolic pathways of TGG in vivo remain largely unclear. In this study, a method using UPLC–Q/TOF MS was established for the detection and identification of the absorbed prototype components and related metabolites in rat plasma and bile after oral administration of TGG at high and normal clinical dosages. A total of 68 components were identified or tentatively identified in plasma and bile samples, including absorbed prototypes and their metabolites. The major absorbed components were gastrodin, isorhynchophylline, rhynchophylline, isocorynoxeine, corynoxeine, geissoschizine methyl ether baicalin, baicalein, wogonoside, wogonin, geniposidic acid, leonurine, 2,3,5,4′‐tetrahydroxystilbene‐2‐Oβ‐d ‐glucoside and emodin. The main metabolic pathways of these components involved phase I (isomerization, hydrolysis and reduction) and phase II (glucuronidation and sulfation) reaction, and the phase II biotransformation pathway was predominant. The present study provides rich information on the in vivo absorption and metabolism of TGG, and the results will be helpful for further studies on the pharmacokinetics and pharmacodynamics of TGG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号