首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Chemical preparation, crystal structure, and NMR spectroscopy of a new trans-2,5-dimethylpiperazinium monophosphate are given. This new compound crystallizes in the triclinic system, with the space group P-1 and the following parameters: a = 6.5033(3), b = 7.6942(4), c = 8.1473(5) Å, α = 114.997(3), β = 92.341(3), γ = 113.136(3), V = 329.14(3) Å3, Z = 1, and Dx = 1.565 g cm?3. The crystal structure has been determined and refined to R = 0.030 and R w(F 2) = 0.032 using 1558 independent reflections. The structure can be described as infinite [H2PO4] n n? chains with (C6H16N2)2+ organic cations anchored between adjacent polyanions to form columns of anions and cations running along the b axis. This compound has also been investigated by IR, thermal, and solid-state, 13C and 31P MAS NMR spectroscopies and Ab initio calculations.  相似文献   

3.
Cyanohydrins are usually formed by addition of hydrogen cyanide to aldehydes or ketones while the elimination of HCN from cyanohydrins is easily observed upon heating. The low thermal stability of these highly boiling compounds leads to difficult studies in the gas phase where partial or complete decomposition is usually observed. Consequently, the reported physicochemical properties of such compounds in the gas phase are still scarce. Keeping with this, four simple cyanohydrins, the glycolonitrile and methyl, vinyl and ethynyl derivatives, have been selected. These are possible candidates for the Interstellar Medium, where the corresponding aldehydes and HCN have been detected, and could have played an important role in prebiotic chemistry, as already proposed for some of them. Three well‐suited spectroscopic techniques, namely, UV photoelectron, infrared, and Raman spectroscopies, in tandem with quantum calculations, have been chosen for the structure analysis. Photoelectron spectroscopy, successfully performed with gaseous compounds, provides the first comparative study on cyanohydrins in the gas phase.  相似文献   

4.
Novel, high‐sensitivity and high‐resolution spectroscopic methods can provide site‐specific nuclear information by exploiting nuclear magneto‐optic properties. We present a first‐principles electronic structure formulation of the recently proposed nuclear‐spin‐induced Cotton–Mouton effect in a strong external magnetic field (NSCM‐B). In NSCM‐B, ellipticity is induced in a linearly polarized light beam, which can be attributed to both the dependence of the symmetric dynamic polarizability on the external magnetic field and the nuclear magnetic moment, as well as the temperature‐dependent partial alignment of the molecules due to the magnetic fields. Quantum‐chemical calculations of NSCM‐B were conducted for a series of molecular liquids. The overall order of magnitude of the induced ellipticities is predicted to be 10?11–10?6 rad T?1 M ?1 cm?1 for fully spin‐polarized nuclei. In particular, liquid‐state heavy‐atom systems should be promising for experiments in the Voigt setup.  相似文献   

5.
The electrochemical synthesis of poly(p-phenylenevinylene) (PPV) and different modifications in the electronic distribution upon electrochemical p-doping (oxidation) and n-doping (reduction) of this polymer film have been studied in situ by resonance Raman spectroscopy, optical absorption spectroscopy and ESR spectroscopy. The polymer film has been prepared by electrochemical reduction of α,α,α′,α′-tetrabromo-p-xylene in dimethylformamide using tetraethylammonium tetrafluoroborate as the electrolyte salt. During electrochemical polymerization the position and relative intensities of the Raman bands change regularly as the chain length increases and finally converge on values reported for chemically prepared PPV. The Raman spectra for electrochemically polymerized PPV is compared to infrared-active vibration bands for electrochemically n-doped PPV. When the polymer undergoes redox reactions (doping-dedoping), shifts and broadening of Raman bands, compared to neutral PPV, are observed. Interpretation of the Raman spectra and the ESR results led to the conclusion that charge transfer in this system is mainly accomplished by polaron species formed upon doping of the polymer. In this reaction the quinoid structure is formed rather than the benzenoid structure. Electronic Publication  相似文献   

6.
Nucleobase‐directed spin‐labeling by the azide‐alkyne ‘click’ (CuAAC) reaction has been performed for the first time with oligonucleotides. 7‐Deaza‐7‐ethynyl‐2′‐deoxyadenosine ( 1 ) and 5‐ethynyl‐2′‐deoxyuridine ( 2 ) were chosen to incorporate terminal triple bonds into DNA. Oligonucleotides containing 1 or 2 were synthesized on a solid phase and spin labeling with 4‐azido‐2,2,6,6‐tetramethylpiperidine 1‐oxyl (4‐azido‐TEMPO, 3 ) was performed by post‐modification in solution. Two spin labels ( 3 ) were incorporated with high efficiency into the DNA duplex at spatially separated positions or into a ‘dA‐dT’ base pair. Modification at the 5‐position of the pyrimidine base or at the 7‐position of the 7‐deazapurine residue gave steric freedom to the spin label in the major groove of duplex DNA. By applying cw and pulse EPR spectroscopy, very accurate distances between spin labels, within the range of 1–2 nm, were measured. The spin–spin distance was 1.8±0.2 nm for DNA duplex 17 ( dA*7,10 ) ?11 containing two spin labels that are separated by two nucleotides within one individual strand. A distance of 1.4±0.2 nm was found for the spin‐labeled ‘dA‐dT’ base pair 15 ( dA*7 ) ?16 ( dT*6 ). The ‘click’ approach has the potential to be applied to all four constituents of DNA, which indicates the universal applicability of the method. New insights into the structural changes of canonical or modified DNA are expected to provide additional information on novel DNA structures, protein interaction, DNA architecture, and synthetic biology.  相似文献   

7.
The photochemistry of 2‐iodo‐3,4,5,6‐tetrafluorophenyl azide ( 7 d ) has been investigated in argon and neon matrices at 4 K, and the products characterized by IR and EPR spectroscopy. The primary photochemical step is loss of a nitrogen molecule and formation of phenyl nitrene 1 d . Further irradiation with UV or visible light results in mixtures of 1 d with azirine 5 d ′, ketenimine 6 d ′, nitreno radical 2 d , and azirinyl radical 9 . The relative amounts of these products strongly depend on the matrix and on the irradiation conditions. Nitreno radical 2 d with a quartet ground state was characterized by EPR spectroscopy. Electronic structure calculations in combination with the experimental results allow for a detailed understanding of the properties of this unusual new type of organic high‐spin molecules.  相似文献   

8.
For Analytical Calculation of Assignments of Vibrational Spectroscopic Frequencies Using the normal coordinate treatment we calculate assignments of vibrational spectroscopic frequencies of the systems X3 ( D 3h) and X4 ( T d) and partially of the systems XY4 ( D 4h) and XY6 ( O h).  相似文献   

9.
10.
Syntheses and Reactions of Aluminium Alkoxide Compounds Al(OcHex)3 ( 1 ) can be synthesized by the reaction of Al with cyclohexanol under evolving of H2 in boiling xylene. [Li{Al(OCH2Ph)4}] ( 2 ) was obtained by treatment of PhCH2OH with a 1 M solution of LiAlH4 in THF. [{(THF)Li}2{Al(OtBu)4}Cl] ( 3 ) is the result of the reaction of four equivalents of LiOtBu on AlCl3 in THF. 3 is the educt for the reactions with the Lewis‐acids InCl3 and FeCl3 in THF leading to the metalates [{(THF)2Li}2{Al(OtBu)4}] · [MCl4] [M = In ( 4 ), Fe ( 5 )]. The attempt to react InCl3 with four equivalents of LiOtBu leads to only one isolated and characterized product, the complex [Li4(OtBu)3(THF)3Cl]2 · THF ( 6 · THF), which can also be synthesized by the treatment of LiCl with three equivalents of LiOtBu in THF. 1–6 · THF were characterized by NMR, IR and MS techniques as well as by X‐ray structure determinations. According to them, 1 , which is tetrameric in solution, is the first structurally characterized example of the proposed trimer form of aluminium alkoxides [ROAl{Al(OR)4}2] with a central trigonal bipyramidal coordinated Al atom. 2 forms a coordination polymer with a distorted tetrahedral coordination sphere of Li and Al, running along [100]. The trinuclear structure skeleton [{(THF)2Li}2{Al(OtBu)4}]+ is still present in the isotypical metalates 4 and 5 . The counter ions [MCl4] possess nearly Td symmetry. The remarkable structural motif of 6 · THF are two heterocubanes [Li4(OtBu)3(THF)3Cl] dimerized by Li–Cl bonds.  相似文献   

11.
Synthesis, Structures, EPR and ENDOR Investigations on Transition Metal Complexes of N, N‐diisobutyl‐N′‐(2, 6‐difluoro)benzoyl selenourea The synthesis and the structures of the NiII and PdII complexes of the ligand N, N‐diisobutyl‐N′‐(2, 6‐difluoro)benzoylselenourea HBui2dfbsu are reported. The ligands coordinate bidentately forming bis‐chelates. The structure of the ligand could not be obtained, however, the structure of its O‐ethyl ester will be reported. Attempts to prepare the CuII complex result only in the formation of oily products. However, the CuII complex could be incorporated into the corresponding NiII and PdII compounds. From this diamagnetically diluted powder and single‐crystal samples were obtained being suitable for EPR‐ENDOR measurements. We report X‐ and Q‐band EPR investigations on the systems [Cu/Ni(Bui2dfbsu)2] and [Cu/Pd(Bui2dfbsu)2] as well as a single‐crystal X‐band EPR study for [Cu/Ni(Bui2dfbsu)2]. The obtained 63, 65Cu and 77Se hyperfine structure tensors allow a determination of the spin‐density distribution within the first coordination sphere. In addition, orientation selective 19F Q‐band pulse ENDOR investigations on powder‐samples of [Cu/Ni(Bui2dfbsu)2] have been performed. The hyperfine structure tensors of two intramolecular 19F atoms could be determined. According to the small 19F couplings only a vanishingly small spin‐density of < 1 % was obtained for these 19F atoms.  相似文献   

12.
Synthesis, Structures, NMR and EPR Investigations on Transition Metal Complexes of monofluorosubstituted Acylselenourea Ligands The syntheses and the structures of the ligand N, N‐diethyl‐N′‐(2‐fluoro)benzoylselenourea HEt2mfbsu and the complexes [Ni(Et2mfbsu)2] and [Zn(Et2mfbsu)2] as well as of the ligand N, N‐diisobutyl‐N′‐(2‐fluoro)benzoylselenourea HBui2mfbsu and the complexes [NiII(Bui2mfbsu)2] and [PdII(Bui2mfbsu)2] are reported. The ligands coordinate bidendately forming bischelates. The PdII and NiII complexes are cis coordinated; in [ZnII(Et2mfbsu)2] the ligands are tetrahedrally arranged. The structure of the also obtained bis[diisobutylamino‐(2‐fluorobenzoylimino)methyl]diselenide is reported. The CuII complexes of both selenourea ligands could not be isolated. They were obtained as oils. Their EPR spectra, however, confirm the presence of CuII bischelates unambiguously. Detailed NMR investigations ‐ 1H‐, 13C‐ and 19F‐COSY, HMBC and HMQC ‐ on [MII(Et2mfbsu)2] (M = NiII, ZnII) allow an exact assignment of all signals to the magnetically active nuclei of the complexes.  相似文献   

13.
Stable suspensions of carbon nanoparticles in polyaniline solutions in N-methylpyrrolidone were compared with the suspensions in aqueous solutions of cetyltrimethylammonium bromide using spectrophotometry in UV— Vis—NIR regions. Polyaniline in low concentrations in N-methylpyrrolidone was found to be a more efficient surfactant than cetyltrimethylammonium bromide in water. Analysis of the optical spectra of suspensions of carbon soots in solutions of the polymer made it possible to reveal a noticeable change in the spectra of the starting polyaniline and nanotubes, indicating the chemical interaction of polyaniline with the carbon nanotubes.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2584–2588, December, 2004.  相似文献   

14.
In a new light : The NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR; see structure, green Pchlide, yellow NADPH) is a good model to investigate catalytical processes in enzymes, as its light activation allows an immediate start of the catalyzed reaction. By irradiation with weak, short laser pulses it is possible to detect conformation changes during the reaction and thus to uncover the elementary steps of the catalytic process.

  相似文献   


15.
16.
17.
18.
The interaction of a series of n-alkyl trimethyl ammonium bromides (C12, C14 and C16) with egg white lysozyme have been studied using fluorescence and UV-Vis spectroscopies and isothermal titration calorimetry (ITC). The trend of variation of molar absorptivity at 281 nm, quantum yields (λex=281 nm) and heat of interaction with respect to surfactant concentration, were measured. The spectrophotometric results show that the hydrophobic interactions have a major role in denaturation mechanism and it would be increased with increasing in hydrocarbon tail length of surfactant. The ITC results indicated the two-step mechanism for unfolding of lysozyme due to its interaction with surfactants.  相似文献   

19.
Dual‐color fluorescence cross‐correlation spectroscopy (dcFCCS) allows one to quantitatively assess the interactions of mobile molecules labeled with distinct fluorophores. The technique is widely applied to both reconstituted and live‐cell biological systems. A major drawback of dcFCCS is the risk of an artifactual false‐positive or overestimated cross‐correlation amplitude arising from spectral cross‐talk. Cross‐talk can be reduced or prevented by fast alternating excitation, but the technology is not easily implemented in standard commercial setups. An experimental strategy is devised that does not require specialized hardware and software for recognizing and correcting for cross‐talk in standard dcFCCS. The dependence of the cross‐talk on particle concentrations and brightnesses is quantitatively confirmed. Moreover, it is straightforward to quantitatively correct for cross‐talk using quickly accessible parameters, that is, the measured (apparent) fluorescence count rates and correlation amplitudes. Only the bleed‐through ratio needs to be determined in a calibration measurement. Finally, the limitations of cross‐talk correction and its influence on experimental error are explored.  相似文献   

20.
The techniques and methods employed in the spectroscopic characterization of gases, liquids, and solids in the terahertz frequency range are reviewed. Terahertz time‐domain spectroscopy is applied to address a broadband frequency range between 100 GHz and 5 THz with a sub‐10 GHz frequency resolution. The unique spectral absorption features measured can be efficiently used in material identification and sensing. Possibilities and limitations of fundamental and industrial applications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号