首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
This work reports a modular and rapid approach to the stereoselective synthesis of a variety of α‐ and β‐(1→2)‐linked C‐disaccharides. The key step is a Ni‐catalyzed cross‐coupling reaction of D ‐glucal pinacol boronate with alkyl halide glycoside easily prepared from commercially available D ‐glucal. The products of this sp2–sp3 cross‐coupling reaction can be converted to glucopyranosyl, mannopyranosyl, or 2‐deoxy‐glucopyranosyl C‐mannopyranosides by one‐ or two‐step stereoselective oxidative–reductive transformations. To the best of our knowledge, we demonstrated the first synthetic application of a challenging sp2–sp3 Suzuki‐Miyaura cross‐coupling reaction in carbohydrate chemistry.  相似文献   

3.
4.
Phytochemical profiling of a MeOH extract from Haberlea rhodopensis by a combination of liquid/liquid extraction, and preparative and semi‐preparative HPLC afforded three new flavone C‐glycosides, hispidulin‐8‐C‐(2″‐O‐syringoyl)‐β‐glucopyranoside ( 3 ), hispidulin 8‐C‐(6‐O‐acetyl‐β‐glucopyranoside) ( 4 ), and hispidulin 8‐C‐(6‐O‐acetyl‐2‐O‐syringoyl‐β‐glucopyranoside) ( 5 ), along with two known phenolic glycosides, myconoside ( 1 ) and paucifloside ( 2 ). The structures were established by extensive spectroscopic analyses including 1D‐ and 2D‐NMR (COSY, HSQC, and HMBC), and HR‐ESI‐TOF‐MS, and by comparison with published data.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Co(CH3)(PMe3)4 forms 100 % regioselectively with (2‐(2‐diphenylphosphanyl)phenyl)‐1,3‐dioxalane and 2‐diphenylphosphanyl‐pyridine, by elimination of methane, the four‐membered metallacycles Co{(C3O2HC6H3)P(C6H5)2}(PMe3)3 ( 1 ) and Co{(CNC4H3)P(C6H5)2}(PMe3)3 ( 4 ). The regioselectivity is independent of the steric requirement of the ortho substituent in the 2‐diphenylphosphanylaryl‐ligands. Oxidative addition with iodomethane transforms 1 and 4 into octahedral, diamagnetic low‐spin d6 complexes Co(CH3)I‐{(C3O2HC6H3)P(C6H5)2}(PMe3)2 ( 2 ) and Co(CH3)I‐{(CNC4H3)P(C6H5)2}(PMe3)2 ( 5 ). Under an atmosphere of carbon monoxide, insertion into the Co‐C bond results in ring expansion by forming the new assembled phosphanylbenzoyl complexes Co{(C4O3HC6H3)‐P(C6H5)2}CO(PMe3)2 ( 3 ) and Co{(OCNC4H3)P(C6H5)2}CO(PMe3)2 ( 6 ). The three different types of cobaltacycles are supported by X‐ray diffraction of 1 , 3 , 5 and 6 .  相似文献   

15.
Seventeen flavonoids, five of which are flavone C‐diosides, 1 – 5 , were isolated from the BuOH‐ and AcOEt‐soluble fractions of the leaf extract of Machilus konishii. Among 1 – 5 , apigenin 6‐Cβ‐D ‐xylopyranosyl‐2″‐Oβ‐D ‐glucopyranoside ( 2 ), apigenin 8‐Cα‐L ‐arabinopyranosyl‐2″‐Oβ‐D ‐glucopyranoside ( 4 ), and apigenin 8‐Cβ‐D ‐xylopyranosyl‐2″‐Oβ‐D ‐glucopyranoside ( 5 ) are new. Both 4 and 5 are present as rotamer pairs. The structures of the new compounds were elucidated on the basis of NMR‐spectroscopic analyses and MS data. In addition, the 1H‐ and 13C‐NMR data of apigenin 6‐Cα‐L ‐arabinopyranosyl‐2″‐Oβ‐D ‐glucopyranoside ( 3 ) were assigned for the first time. The isolated compounds were assayed against α‐glucosidase (type IV from Bacillus stearothermophilus). Kaempferol 3‐O‐(2‐β‐D ‐apiofuranosyl)‐α‐L ‐rhamnopyranoside ( 12 ) was found to possess the best inhibitory activity with an IC50 value of 29.3 μM .  相似文献   

16.
17.
18.
19.
20.
A series of rigid‐rod polyamides and polyimides containing p‐terphenyl or p‐quinquephenyl moieties in backbone as well as naphthyl pendent groups were synthesized from two new aromatic diamines. The polymers were characterized by inherent viscosity, elemental analysis, FT‐IR, 1H‐NMR, 13C‐NMR, X‐ray, differential scanning calorimetry (DSC), thermomechanical analysis (TMA), thermal gravimetric analysis (TGA), isothermal gravimetric analysis, and moisture absorption. All polymers were amorphous and displayed Tg values at 304–337°C. Polyamides dissolved upon heating in polar aprotic solvents containing LiCl as well as CCl3COOH, whereas polyimides were partially soluble in these solvents. No weight loss was observed up to 377–422°C in N2 and 355–397°C in air. The anaerobic char yields were 57–69% at 800°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 15–24, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号