首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quality of the scanning tip is crucial for tip-enhanced Raman spectroscopy (TERS) experiments towards large signal enhancement and high spatial resolution. In this work, we report a controllable fabrication method to prepare TERS-active tips by modifying the tip apex at the atomic scale, and propose two important criteria to in-situ judge the tip's TERS activity for tip-enhanced Raman measurements. One criterion is based on the downshift of the first image potential state to monitor the coupling between the far-field incident laser and near-field plasmon; the other is based on the appearance of the low-wavenumber Raman peaks associated with an atomistic protrusion at the tip apex to judge the coupling efficiency of emissions from the near field to the far field. This work provides an effective method to quickly fabricate and judge TERS-active tips before real TERS experiments on target molecules and other materials, which is believed to be instrumental for the development of TERS and other tip-enhanced spectroscopic techniques.  相似文献   

2.
The importance of identifying DNA bases at the single‐molecule level is well recognized for many biological applications. Although such identification can be achieved by electrical measurements using special setups, it is still not possible to identify single bases in real space by optical means owing to the diffraction limit. Herein, we demonstrate the outstanding ability of scanning tunneling microscope (STM)‐controlled non‐resonant tip‐enhanced Raman scattering (TERS) to unambiguously distinguish two individual complementary DNA bases (adenine and thymine) with a spatial resolution down to 0.9 nm. The distinct Raman fingerprints identified for the two molecules allow to differentiate in real space individual DNA bases in coupled base pairs. The demonstrated ability of non‐resonant Raman scattering with super‐high spatial resolution will significantly extend the applicability of TERS, opening up new routes for single‐molecule DNA sequencing.  相似文献   

3.
We report an investigation of interfacial fluorinated hydrocarbon (carboxylic‐fantrip) monolayers by nanoscale imaging using tip‐enhanced Raman spectroscopy (TERS) and density functional theory (DFT) calculations. By comparing TERS images of a sub‐monolayer prepared by spin‐coating and a π–π‐stacked monolayer on Au(111) in which the molecular orientation is confined, specific Raman peaks shift and line widths narrow in the transferred LB monolayer. Based on DFT calculations that take into account dispersion corrections and surface selection rules, these specific effects are proposed to originate from π–π stacking and molecular orientation restriction. TERS shows the possibility to distinguish between a random and locked orientation with a spatial resolution of less than 10 nm. This work combines experimental TERS imaging with theoretical DFT calculations and opens up the possibility of studying molecular orientations and intermolecular interaction at the nanoscale and molecular level.  相似文献   

4.
Tip-enhanced Raman spectroscopy (TERS) is a promising technique for structural studies of biological systems and biomolecules, owing to its ability to provide a chemical fingerprint with sub-diffraction-limit spatial resolution. This application of TERS has thus far been limited, due to difficulties in generating high field enhancements while maintaining biocompatibility. The high sensitivity achievable through TERS arises from the excitation of a localized surface plasmon resonance in a noble metal atomic force microscope (AFM) tip, which in combination with a metallic surface can produce huge enhancements in the local optical field. However, metals have poor biocompatibility, potentially introducing difficulties in characterizing native structure and conformation in biomolecules, whereas biocompatible surfaces have weak optical field enhancements. Herein, a novel, biocompatible, highly enhancing surface is designed and fabricated based on few-monolayer mica flakes, mechanically exfoliated on a metal surface. These surfaces allow the formation of coupled plasmon enhancements for TERS imaging, while maintaining the biocompatibility and atomic flatness of the mica surface for high resolution AFM. The capability of these substrates for TERS is confirmed numerically and experimentally. We demonstrate up to five orders of magnitude improvement in TERS signals over conventional mica surfaces, expanding the sensitivity of TERS to a wide range of non-resonant biomolecules with weak Raman cross-sections. The increase in sensitivity obtained through this approach also enables the collection of nanoscale spectra with short integration times, improving hyperspectral mapping for these applications. These mica/metal surfaces therefore have the potential to revolutionize spectromicroscopy of complex, heterogeneous biological systems such as DNA and protein complexes.  相似文献   

5.
Despite intensive research in surface enhanced Raman spectroscopy (SERS), the influence mechanism of chemical effects on Raman signals remains elusive. Here, we investigate such chemical effects through tip-enhanced Raman spectroscopy (TERS) of a single planar ZnPc molecule with varying but controlled contact environments. TERS signals are found dramatically enhanced upon making a tip–molecule point contact. A combined physico-chemical mechanism is proposed to explain such an enhancement via the generation of a ground-state charge-transfer induced vertical Raman polarizability that is further enhanced by the strong vertical plasmonic field in the nanocavity. In contrast, TERS signals from ZnPc chemisorbed flatly on substrates are found strongly quenched, which is rationalized by the Raman polarizability screening effect induced by interfacial dynamic charge transfer. Our results provide deep insights into the understanding of the chemical effects in TERS/SERS enhancement and quenching.  相似文献   

6.
An understanding of the photoisomerization mechanism of molecules bound to a metal surface at the molecular scale is required for designing photoswitches at surfaces. It has remained a challenge to correlate the surface structure and isomerization of photoswitches at ambient conditions. Herein, the photoisomerization of a self‐assembled monolayer of azobenzene‐thiol molecules on a Au surface was investigated using scanning tunneling microscopy and tip‐enhanced Raman spectroscopy. The unique signature of the cis isomer at 1525 cm?1 observed in tip‐enhanced Raman spectra was clearly distinct from the trans isomer. Furthermore, tip‐enhanced Raman images of azobenzene thiols after ultraviolet and blue light irradiation are shown with nanoscale spatial resolution, demonstrating a reversible conformational change. Interestingly, the cis isomers of azobenzene‐thiol molecules were preferentially observed at Au grain edges, which is confirmed by density functional theory.  相似文献   

7.
The influence of dielectric substrates on the Raman scattering activities of Ag overlayers has been investigated. Materials with low refractive indices, such as SiO2, SiOx and AlF3, were found to provide suitable supporting platforms for Ag films to give strong surface-enhanced Raman scattering for dye molecules when illuminated at 488 nm. This finding was then extended to tip-enhanced Raman scattering (TERS). Huge enhancements of 70–80×, corresponding to net enhancements of >104, were observed for brilliant cresyl blue test analyte when Ag-coated tips made from or precoated with low refractive index materials were applied. The yield of fabricated tips that significantly enhance the Raman signals was found to be close to 100%. These findings provide crucial steps towards the use of TERS as a robust technique for rapid chemical imaging with nanometer spatial resolution. Figure Silver-coated dielectric tips for tip-enhanced Raman scattering (TERS) are capable of more than 10,000-fold enhancement  相似文献   

8.
We report a Raman characterization of the α borophene polymorph by scanning tunneling microscopy combined with tip-enhanced Raman spectroscopy. A series of Raman peaks were discovered, which can be well related with the phonon modes calculated based on an asymmetric buckled α structure. The unusual enhancement of high-frequency Raman peaks in TERS spectra of α borophene is found and associated with its unique buckling when landed on the Ag(111) surface. Our paper demonstrates the advantages of TERS, namely high spatial resolution and selective enhancement rule, in studying the local vibrational properties of materials in nanoscale.  相似文献   

9.
Mixed thiol self‐assembled monolayers (SAMs) presenting methyl and azobenzene head groups were prepared by chemical substitution from the original single‐component n‐decanethiol or [4‐(phenylazo)phenoxy]hexane‐1‐thiol SAMs on polycrystalline gold substrates. Static contact‐angle measurements were carried out to confirm a change in the hydrophobicity of the functionalized surfaces following the exchange reaction. The mixed SAMs presented contact‐angle values between those of the more hydrophobic n‐decanethiol and the more hydrophilic [4‐(phenylazo)phenoxy]hexane‐1‐thiol single‐component SAMs. By means of tip‐enhanced Raman spectroscopy (TERS) mapping experiments, it was possible to highlight that molecular replacement takes place easily and first at grain boundaries: for two different mixed SAM compositions, TERS point‐by‐point maps with <50 nm step sizes showed different spectral signatures in correspondence to the grain boundaries. An example of the substitution extending beyond grain boundaries and affecting flat areas of the gold surface is also shown.  相似文献   

10.
A novel near‐field optical microscope based on a parabolic mirror is used for recording high‐resolution tip‐enhanced photoluminescence (PL) and Raman images with unprecedented sensitivity and contrast. The measurements reveal small islands on the Au surface with dimensions of only a few nanometres with locally enhanced Au PL. These islands appear as nanometre‐sized hot spots in tip‐enhanced Raman microscopy when benzotriazole molecules adsorbed on the Au surface serve as local sensors for the optical field. The spectra show that localized plasmons are the cause of both the locally enhanced Au PL and enhanced Raman scattering. This finding suggests that the dispersive background in the surface‐enhanced Raman spectra can be explained simply by the enhanced Au PL in the gap. Furthermore, our results show that the surface flatness must be better than 1 nm, to provide an optically homogeneous substrate for near‐field enhanced PL and Raman spectroscopy.  相似文献   

11.
The aggregation pathways of neurodegenerative peptides determine the disease etiology, and their better understanding can lead to strategies for early disease treatment. Previous research has allowed modelling of hypothetic aggregation pathways. However, their direct experimental observation has been elusive owing to methodological limitations. Herein, we demonstrate that nanoscale chemical mapping by tip‐enhanced Raman spectroscopy of single amyloid fibrils at various stages of aggregation captures the fibril formation process. We identify changes in TERS/Raman marker bands for Aβ1‐42, including the amide III band (above 1255 cm?1 for turns/random coil and below 1255 cm?1 for β‐sheet conformation). The spatial distribution of β‐sheets in aggregates is determined, allowing verification of a particular fibrillogenesis pathway, starting from aggregation of monomers to meta‐stable oligomers, which then rearrange to ordered β‐sheets, already at the oligomeric or protofibrillar stage.  相似文献   

12.
Single-molecule tip-enhanced Raman spectroscopy (TERS) has emerged as an important technique for structural analysis at sub-molecular scale. Here in this work, we report aTERS study of an isolated free-base porphyrin molecule adsorbed on the Ag(100) surface at cryogenic temperature (∽7 K). Site-dependent TERS spectra reveal distinct local vibrational information for the chemical constituents within a single molecule. Moreover, distinct spatial features among di erent Raman peaks can be resolved from the TERS mapping images. These images are found to associate with related vibrational modes, enabling to resolve the mode associated with N-H bonds at the sub-nanometer level. This study will provide deep insights into the symmetry of adsorption con gurations and local vibrational information within a single molecule.  相似文献   

13.
Tip-enhanced Raman spectroscopy (TERS) has been used to obtain the Raman signal of surface species on silicon single crystal surfaces without the necessity for surface enhancement by addition of Ag nanoparticles. By illuminating the hydrogen terminated silicon surface covered with a droplet of 4-vinylpyridine with UV light, a 4-ethylpyridine modified silicon surface can be easily obtained. By bringing a scanning tunneling microscope (STM) Au tip with a nanoscale tip apex to a distance of ca. 1 nm from the m...  相似文献   

14.
Integrins are important membrane receptors that form focal adhesions with the extracellular matrix and are transmembrane signaling proteins. We demonstrate that nanoparticles functionalized with c‐RGDfC ligands bind to intact cell membranes and selectively enhance the amino acid signals of the integrin receptor when coupled with tip‐enhanced Raman scattering (TERS) detection. Controlling the plasmonic interaction between the functionalized nanoparticle and the TERS tip provides a clear Raman signal from αVβ3 integrins in the cell membrane that matches the signal of the purified integrin receptor. Random aggregation of nanoparticles on the cell does not provide the same spectral information. Chemical characterization of membrane receptors in intact cellular membranes is important for understanding membrane signaling and drug targeting. These results provide a new method to investigate the chemical interactions associated with ligand binding to membrane receptors in cells.  相似文献   

15.
Heterogeneous catalysts play an important role in surface catalytic reactions, but selective bond breaking and control of reaction products in catalytic processes remain significant challenges. High‐vacuum tip‐enhanced Raman spectroscopy (HV‐TERS) is one of the best candidates to realize surface catalytic reactions. Herein, HV‐TERS was employed in a new method to control dissociation by using hot electrons, generated from plasmon decay, as plasmonic scissors. In this method, the N?N bond in 4,4′‐dimercaptoazobenzene was selectively dissociated by plasmonic scissors, and the reaction products formed from the radical fragment (SC6H5N) were controlled by varying the pH value. Under acidic conditions, p‐aminothiophenol was produced from the radical fragment by attachment of hydrogen ions, whereas under alkaline conditions, 4‐nitrobenzenethiol was obtained by attachment of oxygen ions to the substrate.  相似文献   

16.
Surface‐enhanced Raman scattering (SERS) is quickly growing as an analytical technique, because it offers both molecular specificity and excellent sensitivity. For select substrates, SERS can even be observed from single molecules, which is the ultimate limit of detection. This review describes recent developments in the field of single‐molecule SERS (SM‐SERS) with a focus on new tools for characterizing SM‐SERS‐active substrates and how they interact with single molecules on their surface. In particular, techniques that combine optical spectroscopy and microscopy with electron microscopy are described, including correlated optical and transmission electron microscopy, correlated super‐resolution imaging and scanning electron microscopy, and correlated optical microscopy and electron energy loss spectroscopy.  相似文献   

17.
Spectroscopic methods with high spatial resolution are essential for understanding the physical and chemical properties of nanoscale materials, including quantum structures and biological surfaces. An optical technique is reviewed that relies on the enhanced electric fields in the proximity of a sharp, laser-irradiated metal tip. These fields are utilized for spatially confined probing of various optical signals, thus allowing for a detailed sample characterization far below the diffraction limit. In addition, tip-enhanced fields also provide the sensitivity crucial for the detection of nanoscale volumes. After outlining the principles of near-field optics, the mechanisms contributing to local field enhancement and how it can be used to enhance optical signals are discussed. Different experimental methods are presented and several recent examples of Raman and fluorescence microscopy with 10 nm spatial resolution of single molecules are reviewed.  相似文献   

18.
Bacteria are a major cause of infection. To fight disease and growing resistance, research interest is focused on understanding bacterial metabolism. For a detailed evaluation of the involved mechanisms, a precise knowledge of the molecular composition of the bacteria is required. In this article, various vibrational spectroscopic techniques are applied to comprehensively characterize, on a molecular level, bacteria of the strain Staphylococcus epidermidis, an opportunistic pathogen which has evolved to become a major cause of nosocomial infections. IR absorption spectroscopy reflects the overall chemical composition of the cells, with major focus on the protein vibrations. Smaller sample volumes-down to a single cell-are sufficient to probe the overall chemical composition by means of micro-Raman spectroscopy. The nucleic-acid and aromatic amino-acid moieties are almost exclusively explored by UV resonance Raman spectroscopy. In combination with statistical evaluation methods [hierarchical cluster analysis (HCA), principal component analysis (PCA), linear discriminant analysis (LDA)], the protein and nucleic-acid components that change during the different bacterial growth phases can be identified from the in vivo vibrational spectra. Furthermore, tip-enhanced Raman spectroscopy (TERS) provides insight into the surface structures and follows the dynamics of the polysaccharide and peptide components on the bacterial cells with a spatial resolution below the diffraction limit. This might open new ways for the elucidation of host-bacteria and drug-bacteria interactions.  相似文献   

19.
Tip-enhanced Raman spectroscopy (TERS), which utilizes the strong localized optical field generated at the apex of a metallic tip when illuminated, has been shown to successfully probe the vibrational spectrum of today’s and tomorrow’s state-of-the-art silicon and next-generation semiconductor devices, such as quantum dots. Collecting and analyzing the vibrational spectrum not only aids in material identification but also provides insight into strain distributions in semiconductors. Here, the potential of TERS for nanoscale characterization of strain in silicon devices is reviewed. Emphasis will be placed on the key challenges of obtaining spectroscopic images of strain in actual strained silicon devices. Figure Figure Concept of Tip Enhanced Raman Spectroscopy (TERS), which utilizes the strong localized optical field generated at the apex of a metallic tip when illuminated. TERS has been demonstrated to successfully probe the vibrational spectrum of today’s and tomorrow’s state-of-the-art silicon and next generation semiconductor devices  相似文献   

20.
3D surface‐enhanced Raman scattering (SERS) imaging with highly symmetric 3D silver microparticles as a SERS substrate was developed. Although the synthesis method is purely chemical and does not involve lithography, the synthesized nanoporous silver microparticles possess a regular hexapod shape and octahedral symmetry. By using p‐aminothiophenol (PATP) as a probe molecule, the 3D enhancement patterns of the particles were shown to be very regular and predictable, resembling the particle shape and exhibiting symmetry. An application to the detection of 3D inhomogeneity in a polymer blend, which relies on the predictable enhancement pattern of the substrate, is presented. 3D SERS imaging using the substrate also provides an improvement in spatial resolution along the Z axis, which is a challenge for Raman measurement in polymers, especially layered polymeric systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号