首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrophobicity has been an obstacle that hinders the use of many anticancer drugs. A critical challenge for cancer therapy concerns the limited availability of effective biocompatible delivery systems for most hydrophobic therapeutic anticancer drugs. In this study, we have developed a targeted near‐infrared (NIR)‐regulated hydrophobic drug‐delivery platform based on gold nanorods incorporated within a mesoporous silica framework (AuMPs). Upon application of NIR light, the photothermal effect of the gold nanorods leads to a rapid rise in the local temperature, thus resulting in the release of the entrapped drug molecules. By integrating chemotherapy and photothermotherapy into one system, we have studied the therapeutic effects of camptothecin‐loaded AuMP‐polyethylene glycol‐folic acid nanocarrier. Results revealed a synergistic effect in vitro and in vivo, which would make it possible to enhance the therapeutic effect of hydrophobic drugs and decrease drug side effects. Studies have shown the feasibility of using this nanocarrier as a targeted and noninvasive remote‐controlled hydrophobic drug‐delivery system with high spatial/temperal resolution. Owing to these advantages, we envision that this NIR‐controlled, targeted drug‐delivery method would promote the development of high‐performance hydrophobic anticancer drug‐delivery system in future clinical applications.  相似文献   

2.
The use of conventional therapy based on a single therapeutic agent is not optimal to treat human diseases. The concept called “combination therapy”, based on simultaneous administration of multiple therapeutics is recognized as a more efficient solution. Interestingly, this concept has been in use since ancient times in traditional herbal remedies with drug combinations, despite mechanisms of these therapeutics not fully comprehended by scientists. This idea has been recently re‐enacted in modern scenarios with the introduction of polymeric micelles loaded with several drugs as multidrug nanocarriers. This Concept article presents current research and developments on the application of polymeric micelles for multidrug delivery and combination therapy. The principles of micelle formation, their structure, and the developments and concept of multidrug delivery are introduced, followed by discussion on recent advances of multidrug delivery concepts directed towards targeted drug delivery and cancer, gene, and RNA therapies. The advantages of various polymeric micelles designed for different applications, and new developments combined with diagnostics and imaging are elucidated. A compilation work from our group based on multidrug‐loaded micelles as carriers in drug‐releasing implants for local delivery systems based on titania nanotubes is summarized. Finally, an overview of recent developments and prospective outlook for future trends in this field is given.  相似文献   

3.
In many biomedical applications, drugs need to be delivered in response to the pH value in the body. In fact, it is desirable if the drugs can be administered in a controlled manner that precisely matches physiological needs at targeted sites and at predetermined release rates for predefined periods of time. Different organs, tissues, and cellular compartments have different pH values, which makes the pH value a suitable stimulus for controlled drug release. pH‐Responsive drug‐delivery systems have attracted more and more interest as “smart” drug‐delivery systems for overcoming the shortcomings of conventional drug formulations because they are able to deliver drugs in a controlled manner at a specific site and time, which results in high therapeutic efficacy. This focus review is not intended to offer a comprehensive review on the research devoted to pH‐responsive drug‐delivery systems; instead, it presents some recent progress obtained for pH‐responsive drug‐delivery systems and future perspectives. There are a large number of publications available on this topic, but only a selection of examples will be discussed.  相似文献   

4.
Targeted drug delivery is a promising approach to overcome the limitations of classical chemotherapy. In this respect, Imatinib‐loaded chitosan‐modified magnetic nanoparticles were prepared as a pH sensitive system for targeted delivery of drug to tumor sites by applying a magnetic field. The proposed magnetic nanoparticles were prepared through modification of magnetic Fe3O4 nanoparticles with chitosan and Imatinib. The structural, morphological and physicochemical properties of the synthesized nanoparticles were determined by different analytical techniques including energy‐dispersive X‐ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), Fourier‐transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HR‐TEM), vibrating sample magnetometry (VSM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). UV/visible spectrophotometry was used to measure the Imatinib contents. Thermal stability of the prepared particles was investigated and their efficiency of drug loading and release profile were evaluated. The results demonstrated that Fe3O4@CS acts as a pH responsive nanocarrier in releasing the loaded Imatinib molecules. Furthermore, the Fe3O4@CS/Imatinib nanoparticles displayed cytotoxic effect against MCF‐7 breast cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy.  相似文献   

5.
Targeted drug delivery systems have attracted increasing attention due to their ability for delivering anticancer drugs selectively to tumor cells. Folic acid (FA)‐conjugated targeted block copolymers, FA‐Pluronic‐polycaprolactone (FA‐Pluronic‐PCL) are synthesized in this study. The anticancer drug paclitaxel (PTX) is loaded in FA‐Pluronic‐PCL nanoparticles by nanoprecipitation method. The in vitro release of PTX from FA‐Pluronic‐PCL nanoparticles shows slow and sustained release behaviors. The effect of FA ligand density of FA‐Pluronic‐PCL nanoparticles on their targeting properties is examined by both cytotoxicity and fluorescence methods. It is shown that FA‐Pluronic‐PCL nanoparticles indicated better targeting ability than non‐targeted PCL‐Pluronic‐PCL nanoparticles. Furthermore, FA‐F127‐PCL nanoparticle with 10% FA molar content has more effective antitumor activity and higher cellular uptake than those with 50% and 91% FA molar content. These results prove that FA‐F127‐PCL nanoparticle with 10% FA molar content can be a better candidate as the drug carrier in targeted drug delivery systems.  相似文献   

6.
Functionalized polymeric nanocarriers have been recognized as drug delivery platforms for delivering therapeutic concentrations of chemotherapies. Of this category, star‐shaped multiarm polymers are emerging candidates for targeted delivery of anticancer drugs, due to their compact structure, narrow size distribution, large surface area, and high water solubility. In this study, we synthesized a multiarm poly(acrylic acid) star polymer via macromolecular design via the interchange (MADIX)/reversible addition fragmentation chain transfer (MADIX/RAFT) polymerization and characterized it using nuclear magnetic resonance (NMR) and size exclusion chromatography. The poly(acrylic acid) star polymer demonstrated excellent water solubility and extremely low viscosity, making it highly suited for targeted drug delivery. Subsequently, we selected a hydrophilic drug, cisplatin, and a hydrophobic nitric oxide (NO)‐donating prodrug, O2‐(2,4‐dinitrophenyl) 1‐[4‐(2‐hydroxy)ethyl]‐3‐methylpiperazin‐1‐yl]diazen‐1‐ium‐1,2‐diolate, as two model compounds to evaluate the feasibility of using poly(acrylic acid) star polymers for the delivery of chemotherapeutics. After synthesizing and characterizing two poly(acrylic acid) star polymer‐based nanoconjugates, poly(acrylic acid)–cisplatin (acid–Pt) and poly(acrylic acid–NO (acid–NO) prodrug, the in vitro drug release kinetics of both the acid–Pt and the acid–NO were determined at physiological conditions. In summary, we have designed and evaluated a polymeric nanocarrier for sustained‐delivery of chemotherapies, either as a single treatment or a combination therapy regimen. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Copolymers are among the most promising substances used in the preparation of drug/gene delivery systems. Different categories of copolymers, including block copolymers, graft copolymers, star copolymers and crosslinked copolymers, are of interest in drug delivery. A variety of nanostructures, including polymeric micelles, polymersomes and hydrogels, have been prepared from copolymers and tested successfully for their drug delivery potential. The most recent area of interest in this field is smart nanostructures, which benefit from the stimuli-responsive properties of copolymeric moieties to achieve novel targeted drug delivery systems. Different copolymer applications in drug/gene delivery using nanotechnology-based approaches with particular emphasis on smart nanoparticles are reviewed.  相似文献   

8.
A hollow mesoporous silica nanoparticle (HMSNP) based drug/siRNA co‐delivery system was designed and fabricated, aiming at overcoming multidrug resistance (MDR) in cancer cells for targeted cancer therapy. The as‐prepared HMSNPs have perpendicular nanochannels connecting to the internal hollow cores, thereby facilitating drug loading and release. The extra volume of the hollow core enhances the drug loading capacity by two folds as compared with conventional mesoporous silica nanoparticles (MSNPs). Folic acid conjugated polyethyleneimine (PEI‐FA) was coated on the HMSNP surfaces under neutral conditions through electrostatic interactions between the partially charged amino groups of PEI‐FA and the phosphate groups on the HMSNP surfaces, blocking the mesopores and preventing the loaded drugs from leakage. Folic acid acts as the targeting ligand that enables the co‐delivery system to selectively bind with and enter into the target cancer cells. PEI‐FA‐coated HMSNPs show enhanced siRNA binding capability on account of electrostatic interactions between the amino groups of PEI‐FA and siRNA, as compared with that of MSNPs. The electrostatic interactions provide the feasibility of pH‐controlled release. In vitro pH‐responsive drug/siRNA co‐delivery experiments were conducted on HeLa cell lines with high folic acid receptor expression and MCF‐7 cell lines with low folic acid receptor expression for comparison, showing effective target delivery to the HeLa cells through folic acid receptor meditated cellular endocytosis. The pH‐responsive intracellular drug/siRNA release greatly minimizes the prerelease and possible side effects of the delivery system. By simultaneously delivering both doxorubicin (Dox) and siRNA against the Bcl‐2 protein into the HeLa cells, the expression of the anti‐apoptotic protein Bcl‐2 was successfully suppressed, leading to an enhanced therapeutic efficacy. Thus, the present multifunctional nanoparticles show promising potentials for controlled and targeted drug and gene co‐delivery in cancer treatment.  相似文献   

9.
The design of an ideal drug delivery system with targeted recognition and zero premature release, especially controlled and specific release that is triggered by an exclusive endogenous stimulus, is a great challenge. A traceable and aptamer‐targeted drug nanocarrier has now been developed; the nanocarrier was obtained by capping mesoporous silica‐coated quantum dots with a programmable DNA hybrid, and the drug release was controlled by microRNA. Once the nanocarriers had been delivered into HeLa cells by aptamer‐mediated recognition and endocytosis, the overexpressed endogenous miR‐21 served as an exclusive key to unlock the nanocarriers by competitive hybridization with the DNA hybrid, which led to a sustained lethality of the HeLa cells. If microRNA that is exclusively expressed in specific pathological cell was screened, a combination of chemotherapy and gene therapy should pave the way for a targeted and personalized treatment of human diseases.  相似文献   

10.
The conjugation of PAMAM dendrimer and folic acid is a well‐studied multivalent targeted drug delivery system, but it is expensive and difficult to be synthesized. To construct an inexpensive and well‐defined multivalent targeted drug delivery system, a cheap carrier — Boltorn® series hyperbranched aliphatic polyester — was proposed as the nanodevice to carry fluorescein, folic acid, and methotrexate. The construction follows a facile route: (1) synthesizing the carrier — a hybrid hyperbranched polymer with acyclic hydroxyls and cyclic carbonate, (2) linking fluorescein to the hyperbranched polymer via the acyclic hydroxyls, (3) opening the ring of the cyclic carbonate with the amino group of folic acid, and (4) attaching the drug methotrexate to the resulting hydroxyls by ring‐opening reaction. In this route, the peripheral hydroxyls of the hyperbranched polymer are divided into two groups and reacted with three reagents in sequence to form the desired multivalent targeted drug delivery system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Nanoparticles‐based drug delivery strategies have been widely researched for cancer therapy. However, most of them are expected to accumulate in tumor sites via the enhanced permeability and retention (EPR) effect, which is insufficient to deliver the loaded drug into tumors. Cell membrane–camouflaged nanoparticles have obtained much attention for their excellent stability and long blood circulation and reduced the macrophage cells uptake in drug delivery. Herein, bone marrow–derived mesenchymal stem cell membrane vesicle (SCV)–coated paclitaxel (PTX)–loaded poly (lactide‐co‐glycolide) (PLGA) nanoparticles (SCV/PLGA/PTX) were fabricated as the efficient orthotopic breast cancer–targeted drug delivery system. The SCV/PLGA/PTX showed excellent stability, more controlled PTX release, and more effective antitumor effect in vitro. After administration in vivo, SCV/PLGA/PTX exhibited the long‐term retention and enhanced accumulation at tumor sites due to the immune escape and mesenchymal stem cell–mimicking cancer‐targeting capacity. As expected, the SCV/PLGA/PTX could significantly suppress the primary tumor growth by increased apoptosis and necrosis areas within tumor tissues and attenuated the toxic side effects of PTX in 4T1 orthotopic breast cancer model. The study indicated the mesenchymal stem cell membrane coating strategy was highly efficient for targeted drug delivery, which provided a new insight for precise and effective breast cancer treatment.  相似文献   

12.
Cationic polymers have been chemically modified with a variety of targeting molecules such as peptides, proteins, antibodies, sugars and vitamins for targeted delivery of nucleic acid drugs to specific cells. Stimuli‐sensitive polymers exhibiting different size, charge and conformation in response to physiological signals from specific cells have also been utilized for targeted delivery. To achieve target‐specific delivery of nucleic acids, conjugation chemistry is critical to produce stable nanosized polyplexes tethered with cell‐recognizable ligands for facile cellular uptake via a receptor‐mediated endocytic pathway. In this review, synthetic strategies of functional cationic polymers with various targeting ligands are presented.

  相似文献   


13.
Construction of bioresponsive drug‐delivery nanosystems could enhance the anticancer efficacy of anticancer agents and reduce their toxic side effects. Herein, by using transferrin (Tf) as a surface decorator, we constructed a cancer‐targeted nanographene oxide (NGO) nanosystem for use in drug delivery. This nanosystem (Tf‐NGO@HPIP) drastically enhanced the cellular uptake, retention, and anticancer efficacy of loaded drugs but showed much lower toxicity to normal cells. The nanosystem was internalized through receptor‐mediated endocytosis and triggered pH‐dependent drug release in acidic environments and in the presence of cellular enzymes. Moreover, Tf‐NGO@HPIP effectively induced cancer‐cell apoptosis through activation of superoxide‐mediated p53 and MAPK pathways along with inactivation of ERK and AKT. Taken together, this study demonstrates a good strategy for the construction of bioresponsive NGO drug‐delivery nanosystems and their use as efficient anticancer drug carriers.  相似文献   

14.
Lipid-based formulations have re-emerged as oral drug delivery systems. Advances in the techniques to evaluate the in vivo fate of the formulations, together with an improved knowledge of the gastrointestinal processes/barriers to the evolving lipid-based systems, could explain, at least partially, this revival. In addition, the use of lipid-based formulations is no longer limited to highly lipophilic drugs and has been extended to hydrophilic peptides and macromolecules. Last but not least, (targeted) nanocarriers have been developed exploiting gut physiology toward novel targets in the field. We herein review what we believe have been the major advances in oral drug delivery via lipid-based formulations in recent years, leading to their re-emergence as promising drug delivery systems for future clinical application.  相似文献   

15.
MicroRNAs (miRNAs) regulate a variety of biological processes. The liver‐specific, highly abundant miR‐122 is implicated in many human diseases including cancer. Its inhibition has been found to result in a dramatic loss in the ability of Hepatitis C virus (HCV) to infect host cells. Both antisense technology and small molecules have been used to independently inhibit endogenous miR‐122 function, but not in combination. Intracellular stability, efficient delivery, hydrophobicity, and controlled release are some of the current challenges associated with these novel therapeutic methods. Reported herein is the first single‐vehicular system, based on mesoporous silica nanoparticles (MSNs), for simultaneous cellular delivery of miR‐122 antagomir and small molecule inhibitors. The controlled release of both types of inhibitors depends on the expression levels of endogenous miR‐122, thus enabling these drug‐loaded MSNs to achieve combination inhibition of its targeted mRNAs in Huh7 cells.  相似文献   

16.
DNA nanotechnology holds substantial promise for future biomedical engineering and the development of novel therapies and diagnostic assays. The subnanometer‐level addressability of DNA nanostructures allows for their precise and tailored modification with numerous chemical and biological entities, which makes them fit to serve as accurate diagnostic tools and multifunctional carriers for targeted drug delivery. The absolute control over shape, size, and function enables the fabrication of tailored and dynamic devices, such as DNA nanorobots that can execute programmed tasks and react to various external stimuli. Even though several studies have demonstrated the successful operation of various biomedical DNA nanostructures both in vitro and in vivo, major obstacles remain on the path to real‐world applications of DNA‐based nanomedicine. Here, we summarize the current status of the field and the main implementations of biomedical DNA nanostructures. In particular, we focus on open challenges and untackled issues and discuss possible solutions.  相似文献   

17.
In this work, a novel type of block copolymer micelles with K+‐responsive characteristics for targeted intracellular drug delivery is developed. The proposed smart micelles are prepared by self‐assembly of poly(ethylene glycol)‐b‐poly(N‐isopropylacry‐lamide‐co‐benzo‐18‐crown‐6‐acrylamide) (PEG‐b‐P(NIPAM‐co‐B18C6Am)) block copolymers. Prednisolone acetate (PA) is successfully loaded into the micelles as the model drug, with loading content of 4.7 wt%. The PA‐loaded micelles display a significantly boosted drug release in simulated intracellular fluid with a high K+ concentration of 150 × 10−3m , as compared with that in simulated extracellular fluid. Moreover, the in vitro cell experiments indicate that the fluorescent molecules encapsulated in the micelles can be delivered and specifically released inside the HSC‐T6 and HepG2 cells responding to the increase of K+ concentration in intracellular compartments, which confirms the successful endocytosis and efficient K+‐induced intracellular release. Such K+‐responsive block copolymer micelles are highly potential as new‐generation of smart nanocarriers for targeted intracellular delivery of drugs.  相似文献   

18.
In this study, double‐emulsion capsules (DECs) capable of concealing drug‐incorporated targeted‐supermolecules are developed to achieve “on‐demand” supermolecule release and enhanced sequential targeting for magneto‐chemotherapy. These water‐in‐oil‐in‐water DECs less than 200 nm in diameter are synthesized using a single component of PVA (polyvinyl alcohol) polymer and the magnetic nanoparticles, which are capable of encapsulating large quantities of targeted supermolecules composed of palitaxel‐incorporated beta‐cyclodextrin decorated by hyaluronic acid (HA, a CD44‐targeting ligand) in the watery core. The release profiles (slow, sustained and burst release) of the targeted supermolecules can be directly controlled by regulating the high‐frequency magnetic field (HFMF) and polymer conformation without sacrificing the targeting ability. Through an intravenous injection, the positive targeting of the supermolecules exhibited a 20‐fold increase in tumor accumulation via the passive targeting and delivery of DECs followed by positive targeting of the supermolecules. Moreover, this dual‐targeting drug‐incorporated supermolecular delivery vehicle at the tumor site combined with magneto‐thermal therapy suppressed the cancer growth more efficiently than treatment with either drug or supermolecule alone.

  相似文献   


19.
Thermally sensitive polymeric nanocarriers were developed to optimize the release profile of encapsulated compounds to improve treatment efficiency. However, when referring to thermally sensitive polymeric nanocarriers, this usually means systems fabricated from lower critical solution temperature (LCST) polymers, which have been intensively studied. To extend the field of thermally sensitive polymeric nanocarriers, we for the first time fabricated a polymeric drug delivery system having an upper critical solution temperature (UCST) of 43 °C based on an amphiphilic polymer poly(AAm‐co‐AN)‐g‐PEG. The resulting polymeric micelles could effectively encapsulate doxorubicin and exhibited thermally sensitive drug release both in vitro and in vivo. A drastically improved anticancer efficiency (IC50 decreased from 4.6 to 1.6 μg mL?1, tumor inhibition rate increased from 55.6 % to 92.8 %) was observed. These results suggest that UCST‐based drug delivery can be an alternative to thermally sensitive LCST‐based drug delivery systems for an enhanced antitumor efficiency.  相似文献   

20.
The ubiquitously expressed mannose‐6‐phosphate receptors (MPRs) are a promising class of receptors for targeted compound delivery into the endolysosomal compartments of a variety of cell types. The development of a synthetic, multivalent, mannose‐6‐phosphate (M6P) glycopeptide‐based MPR ligand is described. The conjugation of this ligand to fluorescent DCG‐04, an activity‐based probe for cysteine cathepsins, enabled fluorescent readout of its receptor‐targeting properties. The resulting M6P‐cluster–BODIPY–DCG‐04 probe was shown to efficiently label cathepsins in cell lysates as well as in live cells. Furthermore, the introduction of the 6‐O‐phosphates leads to a completely altered uptake profile in COS and dendritic cells compared to a mannose‐containing ligand. Competition with mannose‐6‐phosphate abolished all uptake of the probe in COS cells, and we conclude that the mannose‐6‐phosphate cluster targets the MPR and ensures the targeted delivery of cargo bound to the cluster into the endolysosomal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号