首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A selective and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous quantitative determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and 1‐O‐ acetylbritannilactone (1‐O‐ ABL) in rat plasma. Chromatographic separation was performed on a Zorbax Eclipse XDB‐C18 column using isocratic mobile phase consisting of methanol–water–formic acid (70:30:0.1, v /v/v) at a flow rate of 0.25 mL/min. The detection was achieved using a triple‐quadrupole tandem MS in selected reaction monitoring mode. The calibration curves of all analytes in plasma showed good linearity over the concentration ranges of 0.850–213 ng/mL for 1,5‐DCQA, and 0.520–130 ng/mL for 1‐O‐ ABL, respectively. The extraction recoveries were ≥78.5%, and the matrix effect ranged from 91.4 to 102.7% in all the plasma samples. The method was successfully applied for the pharmacokinetic study of the two active components in the collected plasma following oral administration of Inula britannica extract in rats.  相似文献   

3.
A simple and sensitive liquid chromatography–electrospray ionization–tandem mass spectrometry (LC‐ESI‐MS/MS) technique was developed and validated for the determination of sibutramine and its N‐desmethyl metabolites (M1 and M2) in human plasma. After extraction with methyl t‐butyl ether, chromatographic separation of analytes in human plasma was performed using a reverse‐phase Luna C18 column with a mobile phase of acetonitrile–10 mm ammonium formate buffer (50:50, v/v) and quantified by ESI‐MS/MS detection in positive ion mode. The flow rate of the mobile phase was 200 μL/min and the retention times of sibutramine, M1, M2 and internal standard (chlorpheniramine) were 1.5, 1.4, 1.3 and 0.9 min, respectively. The calibration curves were linear over the range 0.05–20 ng/mL, for sibutramine, M1 and M2. The lower limit of quantification was 0.05 ng/mL using 500 μL of human plasma. The mean accuracy and the precision in the intra‐ and inter‐day validation for sibutramine, M1 and M2 were acceptable. This LC‐MS/MS method showed improved sensitivity and a short run time for the quantification of sibutramine and its two active metabolites in plasma. The validated method was successfully applied to a pharmacokinetic study in human. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid and sensitive liquid chromatography–tandem mass spectrometric (LC‐MS/MS) assay method has been developed and fully validated for simultaneous quantification of donepezil and its active metabolite, 6‐o‐desmethyl donepezil in human plasma. Analytes and the internal standard were extracted from human plasma by liquid–liquid extraction technique using a 30:70 v/v mixture of ethyl acetate and n‐hexane. The reconstituted samples were chromatographed on a C18 column by using a 70:30 v/v mixture of acetonitrile and ammonium formate (5 mm , pH 5.0) as the mobile phase at a flow rate of 0.6 mL/min. The calibration curve obtained was linear (r ≥ 0.99) over the concentration range of 0.09–24.2 ng/mL for donepezil and 0.03–8.13 ng/mL for 6‐o‐desmethyl donepezil. The results of the intra‐day and inter‐day precision and accuracy studies were well within the acceptable limits. The proposed method was successfully applied for the estimation of the drug in real time plasma samples for pharmacokinetic studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Isomers β‐asarone and α‐asarone have recently been demonstrated to have differential pharmacological activities . Here, we report an LC–MS/MS method developed using acetonitrile to extract two isomeric phenylpropenes from rat plasma. Separation was achieved using a XDB‐C18 column (100 × 2.1 mm; i.d., 1.8 μm) with a mobile phase of methanol–0.1% formic acid (55:45, v/v) at a flow rate of 0.3 mL/min. Calibration curves ranging from 5.20 to 2080 ng/mL for β‐asarone and from 3.68 to 1470 ng/mL for α‐asarone were linear (r2 ≥ 0.9938) with the lower limits of quantification being 5.20 and 3.68 ng/mL for both isomers. Intravenous administration of β‐asarone (2.22 mg/kg) and α‐asarone (2.36 mg/kg) in rats yielded half‐lives of 13.40 ± 4.11 and 28.88 ± 7.82 min with clearance values of 0.196 ± 0.062 mL/min/kg and 0.112 ± 0.012 mL/min/kg for β‐asarone and α‐asarone, respectively.  相似文献   

6.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive and high‐throughput LC‐MS/MS method has been developed and validated for the combined determination of esomeprazole and naproxen in human plasma with ibuprofen as internal standard. Solid‐phase extraction was used to extract both analytes and internal standard from human plasma. Chromatographic separation was achieved in 4.0 min on XBridge C18 column using acetonitrile–25 mM ammonium formate (70:30, v/v) as mobile phase. Mass detection was achieved by ESI/MS/MS in negative ion mode, monitoring at m/z 344.19 → 194.12, 229.12 → 169.05 and 205.13 → 161.07 for esomeprazole, naproxen and IS, respectively. The calibration curves were linear from 3.00 to 700.02 ng/mL for esomeprazole and 0.50 to 150.08 ng/mL for naproxen. The intra‐ and inter‐batch precision and accuracy across four quality control levels met established criteria of US Food and Drug Administration guidelines. The assay is suitable for measuring accurate esomeprazole and naproxen plasma concentrations in human bioequivalence study following combined administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
9.
In this study, a sensitive, simple and reliable method for the quantification of docetaxel in rat plasma was developed and validated using liquid chromatography–tandem mass spectrometry (LC‐MS/MS). The plasma samples were prepared by protein precipitation, and paclitaxel was used as an internal standard (IS). Chromatographic separation was achieved using a Gemini C18 column (2.0 × 150 mm, 5 µm) with a mobile phase consisting of 0.1% formic acid–acetonitrile (30:70, v/v). The precursor–product ion pairs used for multiple reaction monitoring were m/z 808.5 → 527.5 (docetaxel) and m/z 854.2 → 286.5 (IS, paclitaxel). A calibration curve for docetaxel was constructed over the range 1–1000 ng/mL. The developed method was specific, precise and accurate, and no matrix effect was observed. The validated method was applied in a comparative pharmacokinetic study in which two docetaxel formulations, SID530, a new parenteral formulation of docetaxel with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD), and Taxotere, were administered to rats at a dose of 5 mg/kg. For SID530 and Taxotere, the mean C0 values were 1494 and 1818 ng/mL, respectively, and the AUClast values were 837 and 755 h ng/mL, respectively. These two formulations did not show any statistical differences with regard to the pharmacokinetic parameters, thus establishing that the SID530 and Taxotere products are pharmacokinetically comparable in male rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid and sensitive liquid chromatography–tandem mass spectrometric method (LC‐MS/MS) for the determination of bromotetrandrine in rat plasma has been developed and applied to pharmacokinetic study in Sprague–Dawley (SD) rats after a single oral administration. Sample preparation involves a liquid–liquid extraction with n‐hexane–dichlormethane (65:35, containing 1% 2‐propanol isopropyl alcohol, v/v). Bromotetrandrine and brodimoprim (internal standard, IS) were well separated by LC with a Dikma C18 column using methanol–ammonium formate aqueous solution (20 mm ) containing 0.5% formic acid (60:40, v/v) as mobile phase. Detection was performed on a triple quadrupole mass spectrometer in multiple reaction monitoring mode. The ionization was optimized using ESI(+) and selectivity was achieved using MS/MS analysis, m/z 703.0 → 461.0 and m/z 339.0 → 281.0 for bromotetrandrine and IS, respectively. The present method exhibited good linearity over the concentration range of 20–5000 ng/mL for bromotetrandrine in rat plasma with a lower limit of quantification of 20 ng/mL. The intra‐ and inter‐day precisions were 2.8–7.5% and 3.2–8.1%, and the intra‐ and inter‐day accuracy ranged from ?4.8 to 8.2% and ?5.6 to 6.2%, respectively. The method was successfully applied to a pharmacokinetic study after a single oral administration to SD rats with bromotetrandrine of 50 mg/kg. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In the present study, the development and validation of an LC‐MS/MS method for quantifying mefenamic acid in human plasma is described. The method involves liquid–liquid extraction using diclofenac as an internal standard (IS). Chromatographic separation was achieved on a Thermo Hypurity C18, 50 × 4.6 mm, 5 µm column with a mobile phase consisting of 2 m m ammonium acetate buffer and methanol (pH 4.5 adjusted with glacial acetic acid; 15:85, v/v) at a flow‐rate of 0.75 mL/min and the total run time was 1.75 min. Analyte was introduced to the LC‐MS/MS using an atmospheric pressure ionization source. Both the drug and IS were detected in negative‐ion mode using multiple reaction monitoring m/z 240.0 → 196.3 and m/z 294.0 → 250.2, respectively, with a dwell time of 200 ms for each of the transitions. The standard curve was linear from 20 to 6000 ng/mL. This assay allows quantification of mefenamic acid at a concentration as low as 20 ng/mL in human plasma. The observed mean recovery was 73% for the drug. The applicability of this method for pharmacokinetic studies has been established after successful application during a 12‐subject bioavailibity study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Osthole, a major component isolated from the fruit of Cnidium monnieri (L.) Cusson, has been widely used in traditional Chinese medicine. We developed and validated a rapid and sensitive LC‐MS/MS method for the quantification of osthole in rat plasma. Sample preparation involved simple liquid–liquid extraction by ethyl acetate after addition of imperatorin as internal standard (IS). The analyte was separated using a C18 column with the mobile phase of methanol–0.1% formic acid (80:20, v/v) at a flow rate of 0.4 mL/min. The elutes were detected under positive electrospray ionization in multiple reaction monitoring mode. The method was sensitive with 0.5 ng/mL as the lower limit of detection. Good linearity was obtained over the range of 1.0–500.0 ng/mL. The intra and inter‐batch accuracy for osthole in rat plasma samples ranged from 99.5 to 108.1% and the variation was <8.9%. The stability, extraction efficiency and matrix effect were also acceptable. This method was successfully applied to the pharmacokinetic study of osthole in rat after intravenous and oral administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A sensitive liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of ramelteon and its active metabolite M‐II in human plasma. After extraction from 200 μL of plasma by protein precipitation, the analytes and internal standard (IS) diazepam were separated on a Hedera ODS‐2 (5 μm, 150 × 2.1 mm) column with a mobile phase consisted of methanol–0.1% formic acid in 10 mm ammonium acetate solution (85:15, v/v) delivered at a flow rate of 0.5 mL/min. Mass spectrometric detection was operated in positive multiple reaction monitoring mode. The calibration curves were linear over the concentration range of 0.0500–30.0 ng/mL for ramelteon and 1.00–250 ng/mL for M‐II, respectively. This method was successfully applied to a clinical pharmacokinetic study in healthy Chinese volunteers after a single oral administration of ramelteon. The maximum plasma concentration (Cmax), the time to the Cmax and the elimination half‐life for ramelteon were 4.50 ± 4.64ng/mL, 0.8 ± 0.4h and 1.0 ± 0.9 h, respectively, and for M‐II were 136 ± 36 ng/mL, 1.1 ± 0.5 h, 2.1 ± 0.4 h, respectively.  相似文献   

14.
A rapid and sensitive high‐performance LC‐MS/MS method was developed and validated for the simultaneous quantification of codeine and its metabolite morphine in human plasma using donepezil as an internal standard (IS). Following a single liquid‐liquid extraction with ethyl acetate, the analytes were separated using an isocratic mobile phase on a C18 column and analyzed by MS/MS in the selected reaction monitoring mode using the respective [M+H]+ ions, mass‐to‐charge ratio (m/z) 300/165 for codeine, m/z 286/165 for morphine and m/z 380/91 for IS. The method exhibited a linear dynamic range of 0.2–100/0.5–250 ng/mL for codeine/morphine in human plasma, respectively. The lower LOQs were 0.2 and 0.5 ng/mL for codeine and its metabolite morphine using 0.5 mL of human plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated LC‐MS/MS method was applied to a pharmacokinetic study in which healthy Chinese volunteers each received a single oral dose of 30 mg codeine phosphate.  相似文献   

15.
A rapid, simple and fully validated LC‐MS/MS method was developed and validated for the determination of megestrol acetate in human plasma using tolbutamide as an internal standard (IS) after one‐step liquid–liquid extraction with methyl‐tert‐butyl‐ether. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the transitions m/z 385.5 → 267.1 for megestrol acetate and m/z 271.4 → 155.1 for IS. Chromatographic separation was performed on a YMC Hydrosphere C18 column with an isocratic mobile phase, which consisted of 10 mm ammonium formate buffer (adjusted to pH 5.0 with formic acid)–methanol (60:40, v/v) at a flow rate of 0.4 mL/min. The achieved lower limit of quantitation (LLOQ) was 1 ng/mL (signal‐to‐noise ratio > 10) and the standard calibration curve for megestrol acetate was linear (r > 0.99) over the studied concentration range (1–2000 ng/mL). The proposed method was fully validated by determining its specificity, linearity, LLOQ, intra‐ and inter‐day precision and accuracy, recovery, matrix effect and stability. The validated LC‐MS/MS method was successfully applied for the evaluation of pharmacokinetic parameters of megestrol acetate after oral administration of a single dose 800 mg of megestrol acetate (Megace?) to five healthy Korean male volunteers under fed conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A rapid, sensitive and selective liquid chromatography/tandem mass spectrometry method (LC‐MS/MS) was developed and validated for simultaneous determination of albiflorin and paeoniflorin in rat plasma using geniposide as an internal standard. Plasma samples were extracted by solid‐phase extraction. Chromatographic separation was carried out on a Zorbax SB‐C18 analytical column (150 × 2.1 mm × 5 µm) with 0.1% formic acid–acetonitrile (70:30, v/v) as the mobile phase. Detection was performed by multiple reaction monitoring mode using electrospray ionization in the positive ion mode. The total run time was 3.0 min between injections. The calibration curves were linear over a range of 1–1000 ng/mL for albiflorin and 2–2000 ng/mL for paeoniflorin. The overall precision and accuracy for all concentrations of quality controls and standards were better than 15%. Mean recovery was determined to be 87.7% for albiflorin and 88.8% for paeoniflorin. The validated method was successfully applied to the pharmacokinetic study of albiflorin and paeoniflorin in rat plasma after oral administration of Radix Paeoniae Alba extract and Tang‐Min‐Ling‐Wan. The pharmacokinetic parameters showed that albiflorin and paeoniflorin from Tang‐Min‐Ling‐Wan were absorbed more rapidly with higher concentrations in plasma than that from Radix Paeoniae Alba extract. The results provided a meaningful basis for evaluating the clinical applications of traditional Chinese medicine. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
An LC‐MS/MS method was developed for the simultaneous determination of vitexin and isovitexin in rat plasma, using puerarin as the internal standard (IS). Plasma samples extracted with protein precipitation procedure were separated on a Diamonsil® C18 column (150 × 4.6 mm, 5 µm) with a mobile phase composed of methanol and 0.1% formic acid (45:55, v/v). The detection was accomplished by multiple reaction monitoring mode in positive electrospray ionization source. The optimized mass transition ion‐pairs for quantitation were m/z 431.2 → 311.1 for vitexin and isovitexin, and m/z 415.1 → 295.1 for IS. The total run time was 7.5 min for each injection. The calibration curves were linear (r2 > 0.99) over the investigated concentration range (2.00–2000 ng/mL) and the lower limits of quantification were 2.00 ng/mL in rat plasma sample. The intra‐ and inter‐day relative standard deviations were no more than 14.9% and the relative errors were within the range of ?3.2–2.1%. The extraction recoveries for both compounds were between 89.3 and 97.3%. The robust LC‐MS/MS method was further applied in the pharmacokinetic study in Sprague–Dawley rats after oral administration of Santalum album L. leaves extract at a dose of 116 mg/kg. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A highly sensitive and specific LC‐MS/MS method has been developed for simultaneous estimation of nortriptyline (NTP) and 10‐hydroxynortriptyline (OH‐NTP) in human plasma (250 µL) using carbamazepine as an internal standard (IS). LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract NTP, OH‐NTP and IS from human plasma. The total run time was 2.5 min and the elution of NTP, OH‐NTP and IS occurred at 1.44, 1.28 and 1.39 min, respectively; this was achieved with a mobile phase consisting of 20 mm ammonium acetate : acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a HyPURITY C18 column. The developed method was validated in human plasma with a lower limit of quantitation of 1.09 ng/mL for both NTP and OH‐NTP. A linear response function was established for the range of concentrations 1.09–30.0 ng/mL (r > 0.998) for both NTP and OH‐NTP. The intra‐ and inter‐day precision values for NTP and OH‐NTP met the acceptance as per FDA guidelines. NTP and OH‐NTP were stable in a battery of stability studies, i.e. bench‐top, auto‐sampler and freeze–thaw cycles. The developed assay was applied to a pharmacokinetic study in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A highly sensitive and specific LC‐MS/MS method has been developed for simultaneous quantification of ethionamide and ethionamide sulfoxide in human plasma (300 µL) using prothionamide as an internal standard (IS). Solid‐phase extraction was used to extract ethionamide, ethionamide sulfoxide and IS from human plasma. The chromatographic separation of ethionamide, ethionamide sulfoxide and IS was achieved with a mobile phase consisting of 0.1% acetic acid : acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a Peerless Basic C18 column. The total run time was 3.5 min and the elution of ethionamide, ethionamide sulfoxide and IS occurred at 2.50, 2.18 and 2.68 min, respectively. A linear response function was established for the range of concentrations 25.7–6120 ng/mL (r > 0.998) for ethionamide and 50.5–3030 ng/mL (r > 0.998) for ethionamide sulfoxide. The intra‐ and inter‐day precision values for ethionamide and ethionamide sulfoxide met the acceptance as per FDA guidelines. Ethionamide and ethionamide sulfoxide were stable in battery of stability studies, viz. bench‐top, autosampler and freeze–thaw cycles. The developed assay was applied to a pharmacokinetic study in humans. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号