首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
9‐Dehydro‐17‐hydro‐andrographolide (DHA) and sodium 9‐dehydro‐17‐hydro‐andrographolide‐19‐yl sulfate (DHAS) are active ingredients of xiyanping injection in clinical use. A simple, rapid and sensitive UHPLC‐ESI‐MS/MS method was developed for the determination of DHA and DHAS in rat plasma, and the pharmacokinetics of DHA and DHAS after intravenous administration of xiyanping injection was investigated. The plasma samples were treated with methanol to precipitate out protein, and the separation of DHA and DHAS was achieved on a Waters BEH C18 column with a mobile phase consisting of acetonitrile and 10 mmol/L ammonium acetate solution at a flow rate of 0.4 mL/min. DHA, DHAS and the internal standard (internal standard, IS) diethylstilbestrol were detected at negative ion mode. The precursor‐product ion pairs used in multiple reaction monitoring mode were: m/z 349.1 → 286.9 (DHA), m/z 428.9 → 96.0 (DHAS) and m/z 267.1 → 236.9 (IS). Calibration curves offered satisfactory linearity within the test range, and all correlation coefficients were >0.995. The lower limit of detection of DHA and DHAS in plasma samples were determined to be 0.1 ng/mL. The lower limit of quantitation was 0.5 ng/mL for DHA and DHAS. All the recoveries of the quality control samples were in the range of 86.0–102.4%. The ratios of matrix effect were between 89.2 and 105.1%. The method was fully validated and successfully applied to the pharmacokinetic study of DHA and DHAS in rats. The study showed that both DHA and DHAS were distributed and eliminated rapidly in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A new method was developed for the quantitation of 3‐α‐hydroxy tibolone, in human plasma, after oral administration of a tablet formulation containing tibolone (2.5 mg). 3‐α‐Hydroxy tibolone was extracted by a liquid–liquid procedure, using cyproterone acetate as internal standard and chlorobutane as extraction solvent. After extraction, samples were submitted to a derivatization step with p‐toluenesulfonyl isocyanate. A mobile phase consisting of acetonitrile and water (72:28 v/v) was used and chromatographic separation was achieved using Agilent XDB C18 column (100 × 4.6 mm i.d.; 5 µm particle size), at 40°C. Mass spectrometric detection was performed using atmospheric pressure chemical ionization in negative mode for 3‐α‐hydroxy tibolone and in positive mode for cyproterone acetate. The fragmentation transitions were m/z 510.2 → m/z 170.1 and m/z 417.0 → m/z 357.1 for 3‐α‐hydroxy tibolone and cyproterone acetate, respectively. Calibration curves were constructed over the range 100–30,000 pg/mL and the method was shown to be specific, precise and accurate, with a mean recovery rate of 94.2% for 3‐α‐hydroxy tibolone. No matrix effect or carry‐over was detected in the samples. The validated method was applied in a pharmacokinetic study with a tibolone formulation in healthy female volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A LC‐MS/MS method for the determination of a hydrophilic paclitaxel derivative 7‐xylosyl‐10‐deacetylpaclitaxel in rat plasma was developed to evaluate the pharmacokinetics of 7‐xylosyl‐10‐deacetylpaclitaxel in the rats. 7‐Xylosyl‐10‐deacetylpaclitaxel and docetaxel (IS for 7‐xylosyl‐10‐deacetylpaclitaxel) were extracted from rat plasma with acetic ether and analyzed on a Hypersil C18 column (4.6 × 150 mm i.d., particle size 5 µm) with the mobile phase of ACN/0.05% formic acid (50:50, v/v). The analytes were detected using an ESI MS/MS in the multiple reaction monitoring mode. The standard curves for 7‐xylosyl‐10‐deacetylpaclitaxel in plasma were linear (>0.999) over the concentration range of 2.0–1000 ng/mL with a weighting of 1/concentration2. The method showed a satisfactory sensitivity (2.0 ng/mL using 50 µL plasma), precision (CV ≤ 10.1%), accuracy (relative error ?12.4 to 12.0%), and selectivity. This method was successfully applied to the pharmacokinetic study of 7‐xylosyl‐10‐deacetylpaclitaxel in rat plasma after intravenous administration of 7‐xylosyl‐10‐deacetylpaclitaxel to female Wistar rats. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Verproside, isovanilloylcatalpol, catalposide and 6‐O‐veratroyl catalpol are bioactive iridoid glucosides isolated from in a number of folk medicinal plants. A rapid, sensitive and selective liquid chromatography/mass spectrometric (LC/MS) method for the simultaneous determination of verproside, isovanilloylcatalpol, catalposide and 6‐O‐veratroyl catalpol in rat plasma was developed. The analytes were extracted from 50 µL of rat plasma with ethyl acetate using 7‐carboxymethyloxy‐3',4',5‐trimethoxyflavone as internal standard and analyzed on an X‐Bridge C18 column within 6.5 min with 40% methanol in 10 mm ammonium formate (pH 3.0). The analytes were quantified using an electrospray ionization mass spectrometry in the selected ion monitoring mode. The standard curves were linear over the concentration ranges of 10–2000 ng/mL for verproside, isovanilloylcatalpol and catalposide and 20–2000 ng/mL for 6‐O‐veratroyl catalpol. The coefficients of variation and relative errors of verproside, isovanilloylcatalpol, catalposide and 6‐O‐veratroyl catalpol for intra‐ and inter‐assay at four quality control levels were 2.5–8.0 and–4.0–6.6%, respectively. This method was successfully applied to the pharmacokinetic study of verproside and its possible metabolite isovanilloylcatalpol after intravenous administration of verproside, a candidate anti‐asthma drug, in male Sprague–Dawley rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive and specific method was developed and validated for the quantitation of one major metabolite of genipin in rats plasma. The major metabolite was isolated from rat bile via semi‐preparative HPLC technology and its chemical structure was identified as genipin‐1‐o‐glucuronic acid (GNP‐GLU), which was for the first time used as a standard compound for quantitative analysis in rat plasma after administration of genipin. The application of high‐performance liquid chromatography–tandem mass spectrometry in negative mode in multiple reaction monitoring mode was investigated. Chromatographic separation was achieved on an Eclipse XDB‐C18 column using a mobile phase consisting of water with 0.1% formic acid (A)–acetonitrile (B). The limit of detecation was 0.214 ng/mL and the lower limit of quantification was 0.706 ng/mL. The calibration curve was linear from 1.27 to 3810 ng/mL for plasma samples, with a correlation coefficient of 0.9924. The intra‐ and inter‐day precisions and accuracy were all within 15%. The recoveries of GNP‐GLU and puerarin were above 90.0 and 76.2%, respectively. The highly sensitive method was successfully applied to estimate pharmacokinetic parameters of GNP‐GLU following oral and intravenous administration of genipin to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Methyl salicylate‐2‐O‐β‐D‐lactoside (MSL), a natural salicylate derivative of Gaultheria yunnanensis (Franch.) Rehder (G. yunnanensis), has been shown to provide a beneficial anti‐inflammatory effect in animal models. Studies on the pharmacokinetics and bioavailability of MSL can provide both a substantial foundation for understanding its mechanism and empirical evidence to support its use in clinical practice. A simple and sensitive high‐performance liquid chromatography (HPLC) method, coupled with ultraviolet analyte detection, was developed for determining the concentration of MSL and its metabolite in beagle plasma. Chromatographic separation was achieved on a Agilent Zorbax SB‐C18 column (5 μm ,4.6 × 250 mm). The mobile phase consisted of aqueous solution containing 0.1% phosphoric acid and acetonitrile (82:90, v/v), at a flow rate of 1 mL/min. Validation of the assay demonstrated that the developed HPLC method was sensitive, accurate and selective for the determination of MSL and its metabolite in dog plasma. After orally administering three doses of MSL, it could no longer be detected in dog plasma and its metabolite, salicylic acid, was detected. Salicylic acid showed a single peak in the plasma concentration–time curves and linear pharmacokinetics following the three oral doses (r2 > 0.99). In contrast, only MSL was detected in plasma following intravenous administration. These results will aid in understanding the pharmacological significance of MSL. The developed method was successfully used for evaluation of the oral and intravenous pharmacokinetic profile of MSL in dogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Graphene/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin multilayer films composed of graphene sheet (GS) and mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (NH2β‐CD) were fabricated easily by two steps. First, negatively charged graphene oxide (GO) and positively charged mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (NH2β‐CD) were layer‐by‐layer (LBL) self‐assembled on glassy carbon electrode (GCE) modified with a layer of poly(diallyldimethylammonium chloride) (PDDA). Then graphene/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (GS/NH2β‐CD) multilayer films were built up by electrochemical reduction of graphene oxide/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (GO/NH2β‐CD). Combining the high surface area of GS and the active recognition sites on β‐cyclodextrin (β‐CD), the GS/NH2β‐CD multilayer films show excellent electrochemical sensing performance for the detection of DA with an extraordinary broad linear range from 2.53 to 980.05 µmol·L?1. This study offers a simple route to the controllable formation of graphene‐based electrochemical sensor for the detection of DA.  相似文献   

8.
Arylnaphthalene lignans have attracted considerable interest with the discovery of their antineoplastic activities. Two such compounds are justicidin B and 6′‐hydroxy justicidin C, both of which have been isolated from the herb Justicia procumbens . We sought to develop and validate a sensitive and accurate, ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry method for the structural determination and pharmacokinetics of justicidin B and 6′‐hydroxy justicidin C. Chromatographic separation was achieved on an Agilent 300SB‐C18 column using water (0.5% formic acid, 10 mM NH4COOH) methanol as the mobile phase. The plasma samples obtained after oral administration of the active extract of Justicia procumbens were successfully analyzed with our novel method, thereby demonstrating its sound applicability and reliability. The lower limit of quantification for justicidin B and 6′‐hydroxy justicidin C was 0.50 and 1.00 ng/mL in 50 μL rat plasma, respectively. The elimination half‐life and clearance of justicidin B was estimated to be 1.27 ± 0.61 h and 5.40 ± 0.22 L/h/kg while that of 6′‐hydroxy justicidin C was 2.07 ± 0.70 h and 11.84 ± 1.06 L/h/kg. This newly developed and validated method was successfully applied to the quantification and pharmacokinetic study of justicidin B and 6′‐hydroxy justicidin C in rats.  相似文献   

9.
A novel, rapid and sensitive LC‐MS/MS method for the determination of 1‐O‐Acetylbritannilactone (ABL), a sesquiterpene lactone abundant in Inula britannica, was developed and validated using heteroclitin D as internal standard. Separation was achieved on a reversed phase Hypersil Gold C18 column (50 × 4.6 mm, i.d., 3.0 µm) using isocratic elution with methanol–5 mM ammonium acetate buffer aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min. Calibration curve was linear (r > 0.99) in a concentration range of 1.60–800 ng/mL with the lower limit of quantification of 1.60 ng/mL. Intra‐ and inter‐day accuracy and precision were validated by relative error (RE) and relative standard deviation (RSD) values, respectively, which were both less than ±15%. The validated method has been successfully applied to a pharmacokinetic study of ABL in rats. The elimination half‐lives were 0.412 ± 0.068, 0.415 ± 0.092 and 0.453 ± 0.071 h after a single intravenous administration of 0.14, 0.42, and 1.26 mg/kg ABL, respectively. The area under the plasma concentration–time curve from time zero to the last quantifiable time point and from time zero to infinity and the plasma concentrations at 2 min were linearly related to the doses tested. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid, selective and sensitive UPLC‐UV method was developed and validated for the quantitative analysis of carbamazepine and its epoxide metabolite in rat plasma. A relatively small volume of plasma sample (200 μL) is required for the described analytical method. The method includes simple protein precipitation, liquid–liquid extraction, evaporation, and reconstitution steps. Samples were separated on a Waters Acquity UPLC BEH C18 column (1.7 µm, 2.1 × 100 mm) with a gradient mobile phase consisted of 60:40 going to 40:60 (v/v) water–acetonitrile at a flow rate of 0.5 mL/min. The total run time was as low as 6 min, representing a significant improvement in comparison to existing methods. Excellent linearity (r2 > 0.999) was achieved over a wide concentration range. Close to complete recovery, short analysis time, high stability, accuracy, precision and reproducibility, and low limit of quantitation were demonstrated. Finally, we successfully applied this analytical method to a pre‐clinical oral pharmacokinetic study, revealing the plasma profiles of both carbamazepine and carbamazepine‐10,11‐epoxide following oral administration of carbamazepine to rats. The advantages demonstrated in this work make this analytical method both time‐ and cost‐efficient approach for drug and metabolite monitoring in the pre‐clinical/clinical laboratory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This study is the first to detail the development and validation of a rapid, sensitive and specific LC‐ESI‐MS/MS method for the determination of eriodictyol‐8‐C‐β‐d ‐glucopyranoside (EG) in rat plasma. A simple protein precipitation method was used for plasma sample preparation. Chromatographic separation was successfully achieved on an Agilent Zorbax XDB C18 column (2.1 × 50 mm, 3.5 µm) using a step gradient program with the mobile phase of 0.1% formic acid aqueous solution and acetonitrile with 0.1% formic acid. EG and the internal standard (IS) were detected using an electrospray negative ionization mass spectrometry in the multiple reaction monitoring mode. This method demonstrated good linearity and did not show any endogenous interference with the active compound and IS peaks. The lower limit of quantification of EG was 0.20 ng/mL in 50 μL rat plasma. The average recoveries of EG and IS from rat plasma were both above 80%. The inter‐day precisions (relative standard deviation) of EG determined over 5 days were all within 15%. The present method was successfully applied to a quantification and bioavailability study of EG in rats after intravenous and oral administration. The oral absolute bioavailability of EG in rats was estimated to be 7.71 ± 1.52%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
For the first time, an HPLC method was developed and validated for the determination of stemoninine in plasma after oral and intravenous administration of the extract of the roots of Stemona tuberosa to rats. Plasma samples were analyzed on a Waters reversed‐phase C18 column using a gradient mobile‐phase of eluent A (water containing 0.1% formic acid and 0.2% triethylamine, pH 3.68) and eluent B (acetonitrile–water, 50:50, v/v). The flow rate was 1.0 mL/min and the detector wavelength was 210 nm. The Waters Oasis solid‐phase extraction cartridge was applied for the preparation of plasma samples with high recovery. A good linear relationship was obtained in the concentration range of 1.55–124 µg/mL (r = 0.9995). The limits of quantification and detection were 1.55 and 0.42 µg/mL, respectively. The average recoveries ranged from 91.11 to 96.43% in plasma at stemoninine concentrations of 3.10, 62.0 and 99.2 µg/mL. Intra‐ and inter‐batch coefficient of variations were 3.27–5.37% and 2.49–3.92%, respectively. This method was successfully applied to pharmacokinetic studies after oral and intravenous administration of Stemona tuberosa extract in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
14.
A sensitive and specific liquid chromatography electrospray ionization–mass spectrometry method for determination of 1,4‐dimethylpyridinium (1,4‐DMP) in rat plasma has been developed and validated. Chromatography was performed on an Aquasil C18 analytical column (4.6 × 150 mm, 5 µm, Thermo Scientific, Rockford, IL, USA) with isocratic elution using a mobile phase containing acetonitrile and water with an addition of 0.1% of formic acid. Detection was achieved by an Applied Biosystems MDS Sciex (Concord, Ontario, Canada) API 2000 triple quadrupole mass spectrometer. Electrospray ionization was used for ion production. The limit of detection in the single ion monitoring mode was found to be 10 ng/mL. The limit of quantification was 50 ng/mL. The precision and accuracy for both within‐day and between‐day determination of 1,4‐dimethylpyridinium was 2.4–7.56 and 90.93–111.48%. The results of this analytical method validation allow pharmacokinetic studies to be carried out in rats. The method was used for the pilot study of the pharmacokinetic behavior of 1,4‐DMP in rats after intravenous administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In order to accurately investigate the preclinical pharmacokinetics of (R)‐(+)‐rabeprazole sodium injection, a reliable high‐performance liquid chromatography (HPLC) method was developed using a Chiral‐AGP column to prove that there is no chiral bioconversion of (R)‐(+)‐rabeprazole to (S)‐(?)‐rabeprazole in beagle dogs after single intravenous administration of (R)‐(+)‐rabeprazole sodium injection. An HPLC–tandem mass spectrometry (HPLC‐MS/MS) method for analysis of (R)‐(+)‐rabeprazole was developed and validated, and used to acquire the pharmacokinetic parameters in beagle dogs. (R)‐(+)‐Rabeprazole and internal standard omeprazole were extracted from plasma samples by protein precipitation and separated on a C18 column using methanol–5 mm ammonium acetate as mobile phase. Detection was performed using a turbo‐spray ionization source and mass spectrometric positive multi‐reaction monitoring mode. The linear relationship was achieved in the range from 2.5 to 5000 ng/mL. The method also afforded satisfactory results in terms of sensitivity, specificity, precision, accuracy and recovery as well as the stability of the analyte under various conditions, and was successfully applied to a preclinical pharmacokinetic study in beagle dogs after single intravenous administrations of (R)‐(+)‐rabeprazole sodium injection at 0.33, 2 and 6 mg/kg. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A series of new andrographolide C‐glycoside derivatives were synthesized by a facile route. The new compounds showed higher potency than the parent andrographolide evaluated as α‐glycosidase inhibitors in the preliminary study.  相似文献   

17.
A rapid and sensitive LC–MS/MS method with good accuracy and precision was developed and validated for the pharmacokinetic study of quercetin‐3‐O‐β‐d ‐glucopyranosyl‐7‐O‐β‐d ‐gentiobioside (QGG) in Sprague–Dawley rats. Plasma samples were simply precipitated by methanol and then analyzed by LC–MS/MS. A Venusil® ASB C18 column (2.1 × 50 mm, i.d. 5 μm) was used for separation, with methanol–water (50:50, v/v) as the mobile phase at a flow rate of 300 μL/min. The optimized mass transition ion‐pairs (m/z) for quantitation were 787.3/301.3 for QGG, and 725.3/293.3 for internal standard. The linear range was 7.32–1830 ng/mL with an average correlation coefficient of 0.9992, and the limit of quantification was 7.32 ng/mL. The intra‐ and inter‐day precision and accuracy were less than ±15%. At low, medium and high quality control concentrations, the recovery and matrix effect of the analyte and IS were in the range of 89.06–92.43 and 88.58–97.62%, respectively. The method was applied for the pharmacokinetic study of QGG in Sprague–Dawley rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of the present study was to characterize the excretion of pure vitexin‐4”‐O‐glucoside (VOG) in mice following oral and intravenous administration at a dose of 30 mg/kg. A sensitive and specific HPLC method with hespridin as internal standard, a Diamonsil C18 column protected with a KR C18 guard column and a mixture consisting of methanol–acetonitrile–tetrahydrofuran–0.1% glacial acetic acid (6:2:18:74, v/v/v/v) as mobile phase was developed and validated for quantitative analysis in biological samples. VOG could be excreted as prototype in excreta including urine and feces after both routes of administration, and the cumulative excretion of VOG was 24.31 ± 11.10% (17.97 ± 5.59% in urinary excretion; 6.34 ± 5.51% in fecal excretion) following oral dosing and 5.66 ± 3.94% (4.78 ± 3.13% in urinary excretion; 0.88 ± 0.81% in fecal excretion) following intravenous dosing. The results showed that the elimination of VOG after the two routes was fairly low, which meant that VOG was metabolized as other forms and the elimination after oral dosing was almost 4.3‐fold that after intravenous dosing. For both routes of administration, VOG excreted as prototype in urine was much more than that in feces, nearly 2.83‐fold for oral administration and 5.43‐fold for intravenous administration, which should be attributed to enterohepatic circulation. Taken together, renal excretion was the dominant path of elimination of VOG for oral and intravenous administration in mice and biliary excretion contributed less. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A simple and rapid normal‐phase HPLC method for enantiospecific separation of a psychostimulant, adrafinil (ADL), and its metabolite modafinil (MDL) in rat serum and urine was developed. The separation was accomplished on a normal‐phase polysaccharide stationary phase Chiralcel OJ‐H using n‐hexane–ethanol (62:38 v/v) as a mobile phase at a flow rate of 1.0 mL/min. Detection was carried out at 225 nm using a photo diode array (PDA) detector. The elution order of the enantiomers was determined by a polarimeter connected in series with the PDA. ADL and its metabolite were recovered from rat serum and urine by solid phase extraction using Oasis HLB cartridges and the mean recoveries were ≥80%. The enantiomers were eluted within 15 min without any interference from endogenous substances. The calibration curves were linear (r2 > 0.998) in the concentration range of 1.20–500 µg/mL for ADL and MDL. The assay was specific, accurate, precise and reproducible (intra‐ and inter‐day precisions RSDs <7.2%). ADL in rat serum was stable over three freeze–thaw cycles at ambient temperature for 4 h. The method was successfully applied to pharmacokinetic studies of adrafinil after an oral administration to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Xiao‐Ai‐Ping injection (XAPI) is a traditional Chinese medicine that has been widely used to treat cancer. Modern pharmacological studies have demonstrated that C21 steroids are the main active compounds in XAPI. In this study, a sensitive and specific liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated the first time for simultanenous determination of three isomeric pregnane genins (17β‐tenacigenin B, tenacigenin B and tenacigenin A) and their corresponding glycosides (tenacigenoside A, tenacissoside F and marsdenoside I) from XAPI in rat plasma. A simple liquid–liquid extraction technique was used after the addition of dexamethasone acetate as internal standard. The chromatography separation of analytes was achieved on an Agilent Zorbax Eclipse XDB‐C18 column (3.5 µm, 150 × 3 mm i.d.) using methanol–water as mobile phase in a gradient elution program. Detection was performed in multiple reaction monitoring mode using electrospray ionization in the negative ion mode. The method showed satisfactory linearity over a concentration range 5.00–2000.00 ng/mL for tenacigenin B, tenacigenin A, marsdenoside I and tenacissoside F (r2 > 0.99), 10.00–4000.00 ng/mL for 17β‐tenacigenin B and tenacigenoside A (r2 > 0.99). Intra‐ and inter‐day precisions (valued as relative standard deviation) were <9.00% and accuracies (as relative error) in the range ?6.31 to 7.23%. Finally, this validated method was successfully applied to the pharmacokinetic study of XAPI after intravenous administration to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号