首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
A meso–meso β‐β β‐β triply linked subporphyrin dimer 6 was synthesized by stepwise reductive elimination of β‐to‐β doubly PtII‐bridged subporphyrin dimer 9 . Dimer 6 was characterized by spectroscopic and electrochemical measurements, theoretical calculations, and picosecond time‐resolved transient absorption spectroscopy. X‐ray diffraction analysis reveals that 6 has a bowl‐shaped structure with a positive Gaussian curvature. Despite the curved structure, 6 exhibits a remarkably red‐shifted absorption band at 942 nm and a small electrochemical HOMO–LUMO gap (1.35 eV), indicating an effectively conjugated π‐electronic network.  相似文献   

2.
Direct β‐to‐β linked branched and cyclic porphyrin trimers and pentamers have been synthesized by the Suzuki–Miyaura coupling of β‐borylporphyrins and β‐bromoporphyrins. The cyclic porphyrin trimer, the smallest directly linked cyclic porphyrin wheel to date, and its twined pentamer, exhibit small electrochemical HOMO–LUMO gaps, broad nonsplit Soret bands, and red‐shifted Q‐bands, thus indicating large electronic interactions between the constituent porphyrin units.  相似文献   

3.
Iridium‐catalyzed borylation of B‐aryl meso‐free subporphyrinato boron(III) complexes (hereinafter referred to simply as subporphyrins) with bis(pinacolato)diboron gave 2,13‐diborylated subporphyrins regioselectively, which served as promising synthetic precursors for 2,13‐diarylated subporphyrins and doubly β‐to‐β 1,3‐butadiyne‐bridged subporphyrin dimers. 2,13‐Diarylated subporphyrins display perturbed absorption spectra, depending upon the β‐aryl substituents. Doubly 1,3‐butadiyne‐bridged syn and anti subporphyrin dimers thus prepared exhibit differently altered absorption spectra with split Soret‐like bands, which have been accounted for in terms of exciton coupling.  相似文献   

4.
Singly and doubly 1,2‐phenylene‐inserted NiII porphyrin arch‐tape dimers 3 and 9 were synthesized from the corresponding β‐to‐β 1,2‐phenylene‐bridged NiII porphyrin dimers 5 and 11 via Ni0‐mediated reductive cyclization and DDQ/Sc(OTf)3‐promoted oxidative cyclization as key steps, respectively. Owing to the fused eight‐membered ring(s), 3 showed a more contorted structure than those of previously reported arch‐tape dimers 2 a and 2 b possessing a fused seven‐membered ring. Furthermore, 9 displayed much larger molecular contortion. As the molecular contortion increases, the Q band of the absorption spectrum becomes more red‐shifted and the electrochemcial HOMO–LUMO gap becomes smaller, reaching at 1294 nm and 0.77 eV in 9 , respectively. The effect of molecular contortion on the electronic properties was studied by means of DFT calculations.  相似文献   

5.
β‐to‐β 2,5‐Pyrrolylene linked cyclic porphyrin oligomers have been synthesized by Suzuki–Miyaura coupling of 2,5‐diborylpyrrole and 3,7‐dibromoporphyrin. The cyclic porphyrin oligomers exhibit roughly coplanar structures, strong excitonic coupling, small electrochemical HOMO–LUMO gaps, and ultrafast excitation energy transfer between the neighboring porphyrins via the pyrrolylene bridge.  相似文献   

6.
Silylation of peripherally lithiated porphyrins with silyl electrophiles has realized the first synthesis of a series of directly silyl‐substituted porphyrins. The meso‐silyl group underwent facile protodesilylation, whereas the β‐silyl group was entirely compatible with standard work‐up and purification on silica gel. The meso‐silyl group caused larger substituent effects to the porphyrin compared with the β‐silyl group. Silylation of β‐lithiated porphyrins with 1,2‐dichlorodisilane furnished β‐to‐β disilane‐bridged porphyrin dimers. A doubly β‐to‐β disilane‐bridged NiII‐porphyrin dimer was also synthesized from a β,β‐dilithiated NiII‐porphyrin and characterized by X‐ray crystallographic analysis to take a steplike structure favorable for interporphyrinic interaction. Denickelation of βsilylporphyrins was achieved upon treatment with a 4‐tolylmagnesium bromide to yield the corresponding freebase porphyrins.  相似文献   

7.
Directly 2,12‐ and 2,8‐linked ZnII porphyrin oligomers were prepared from 2,12‐ and 2,8‐diborylated ZnII porphyrin by a cross platinum‐induced coupling with a 2‐borylated ZnII porphyrin end unit followed by a triphenylphosphine (PPh3)‐mediated reductive elimination. Comparative studies on the steady‐state absorption and fluorescence spectra and the fluorescence lifetimes led to a conclusion that the exciton in the S1 state is delocalized over approximately four and two ZnII porphyrin units for 2,12‐ and 2,8‐linked ZnII porphyrin arrays, respectively.  相似文献   

8.
7,8‐Dehydropurpurin has attracted much attention owing to the dual 18π‐ and 20π‐electron circuits in its macrocyclic conjugation. The two‐fold Pd‐catalyzed [3+2] annulation of meso‐bromoporphyrin with 1,4‐diphenylbutadiyne furnished 7,8‐dehydropurpurin dimers. The 8a,8a‐linked dimer displays a red‐shifted and enhanced absorption band in the NIR region and a small electrochemical HOMO–LUMO band gap as a consequence of efficient conjugation between the two coplanar 7,8‐dehydropurpurin units. Treatment of this dimer with N‐bromosuccinimide in chloroform and ethanol gave β‐to‐β vinylene‐bridged porphyrin dimers. Owing to the highly constrained conformations, these dimers exhibit perturbed absorption spectra, small Stokes shifts, and high fluorescence quantum yields.  相似文献   

9.
A 1,3‐phenylene‐bridged hexameric ZnII porphyrin wheel was synthesized by a Suzuki–Miyaura coupling reaction through a one‐pot or a stepwise route. The hexameric wheel structure was revealed by using X‐ray diffraction analysis. The porphyrin wheel exhibits a split Soret band due to effective exciton coupling and displays efficient excitation energy transfer along the wheel. Measurements of fluorescence anisotropy decay and pump‐power‐dependent decay reveal a rapid excitation energy hopping along the wheel with a rate of 1.4 ps.  相似文献   

10.
A facile and fast approach, based on microwave‐enhanced Sonogashira coupling, has been employed to obtain in good yields both mono‐ and, for the first time, disubstituted push–pull ZnII porphyrinates bearing a variety of ethynylphenyl moieties at the β‐pyrrolic position(s). Furthermore, a comparative experimental, electrochemical, and theoretical investigation has been carried out on these β‐mono‐ or disubstituted ZnII porphyrinates and meso‐disubstituted push–pull ZnII porphyrinates. We have obtained evidence that, although the HOMO–LUMO energy gap of the meso‐substituted push–pull dyes is lower, so that charge transfer along the push–pull system therein is easier, the β‐mono‐ or disubstituted push–pull porphyrinic dyes show comparable or better efficiencies when acting as sensitizers in DSSCs. This behavior is apparently not attributable to more intense B and Q bands, but rather to more facile charge injection. This is suggested by the DFT electron distribution in a model of a β‐monosubstituted porphyrinic dye interacting with a TiO2 surface and by the positive effect of the β substitution on the incident photon‐to‐current conversion efficiency (IPCE) spectra, which show a significant intensity over a broad wavelength range (350–650 nm). In contrast, meso‐substitution produces IPCE spectra with two less intense and well‐separated peaks. The positive effect exerted by a cyanoacrylic acid group attached to the ethynylphenyl substituent has been analyzed by a photophysical and theoretical approach. This provided supporting evidence of a contribution from charge‐transfer transitions to both the B and Q bands, thus producing, through conjugation, excited electrons close to the carboxylic anchoring group. Finally, the straightforward and effective synthetic procedures developed, as well as the efficiencies observed by photoelectrochemical measurements, make the described β‐monosubstituted ZnII porphyrinates extremely promising sensitizers for use in DSSCs.  相似文献   

11.
Stable meta‐ and para‐phenylene bridged porphyrin meso‐oxy radical dimers and their NiII and ZnII complexes were synthesized. All the dimers exhibited optical and electrochemical properties similar to the corresponding porphyrin meso‐oxy radical monomers, indicating small electronic interaction between the two spins. Intramolecular spin‐spin interaction through the π‐spacer was determined to be J/kB=?15.9 K for m‐phenylene bridged ZnII porphyrin dimer. The observed weak antiferromagnetic interaction has been attributed to less effective conjugation between the porphyrin radical and linking π‐spacer due to large dihedral angle. In the case of ZnII complexes, both para‐ and meta‐phenylene bridged dimers formed 1D‐chain in solutions and in the solid states through Zn‐O coordination.  相似文献   

12.
The chlorination of β‐halo or β,β‐dihaloporphyrins with 2‐chloro‐1,3‐bis(methoxycarbonyl)guanidine (Palau′Chlor) proceeded selectively at the neighboring unsubstituted meso position to afford meso,β‐dihalo or meso,β,β‐trihaloporphyrins. Such oligohaloporphyrins are useful platforms for constructing more‐elaborate porphyrin‐based extended π systems. For example, meso‐chloro‐β,β‐diiodoporphyrin participated in an efficient single‐step synthesis of a diphenylamine‐fused porphyrin. In addition, meso‐chloro‐β‐iodoporphyrin was transformed in stepwise fashion into an efficiently conjugated meso‐to‐meso,β‐to‐β doubly butadiyne‐linked porphyrin dimer, a system which was previously difficult to access without such haloporphyrin precursors.  相似文献   

13.
The near‐infrared (NIR) luminescence efficiency of lanthanide complexes is largely dependent on the electronic and photophysical properties of antenna ligands. Although porphyrin ligands are efficient sensitizers of lanthanide NIR luminescence, non‐pyrrolic porphyrin analogues, which have unusual symmetry and electronic states, have been much less studied. In this work, we used porpholactones, a class of β‐pyrrolic‐modified porphyrins, as ligands and investigated the photophysical properties of lanthanide porpholactones Yb‐1 a – 5 a . Compared with Yb porphyrin complexes, the porpholactone complexes displayed remarkable enhancement of NIR emission (50–120 %). Estimating the triplet‐state levels of porphyrin and porpholactone in Gd complexes revealed that β‐lactonization of porphyrinic ligands lowers the ligand T1 state and results in a narrow energy gap between this state and the lowest excited state of Yb3+. Transient absorption spectra showed that YbIII porpholactone has a longer transient decay lifetime at the Soret band than the porphyrin analogue (30.8 versus 17.0 μs). Thus, the narrower energy gap and longer lifetime arising from β‐lactonization are assumed to enhance NIR emission of Yb porpholactones. To demonstrate the potential applications of Yb porpholactone, a water‐soluble Yb bioprobe was constructed by conjugating glucose to Yb ‐ 1 a . Interestingly, the NIR emission of this Yb porpholactone could be specifically switched on in the presence of glucose oxidase and then switched off by addition of glucose. This is the first demonstration that non‐pyrrolic porphyrin ligands enhance the sensitization efficiency of lanthanide luminescence and also display switchable NIR emission in the region of biological analytes (800–1400 nm).  相似文献   

14.
Bidipyrrin‐bridged macrocycles, prepared from NiII‐bridged dipyrrin‐based nanorings by intramolecular oxidative biaryl coupling reactions, yielded [2+4]‐type ZnII‐assisted stable twisted‐ring dimers comprising two double helices. These [2+4]‐type metal complexes can be optically resolved by chiral HPLC and exhibit tunable electronic and optical properties as a result of spring‐like motions. The double helices behave as glue to connect two macrocycles and as the screws of hinges to form thermally responsive synchronized spring systems.  相似文献   

15.
Azobenzene‐bridged β‐to‐β and meso‐to‐meso porphyrin nanorings were successfully synthesized by a palladium‐catalyzed Suzuki–Miyaura coupling reaction in a logical synthesis. The dimeric structure was confirmed by XRD analysis. The azo linkages in di‐ and tetramers are in the alltrans conformation, whereas in the trimers one azo linkage can be interconverted between cis and trans under external stimulation. When trimeric isomers are heated to 333 K or higher, the azo linkages will be in the alltrans configurations: the pure alltrans trimer can be kept in the dark for several months. Fluorescence anisotropy and pump‐power‐dependent decay results revealed excitation energy transfer for azobenzene‐bridged zinc–porphyrin nanorings. The distances between porphyrin units of these azobenzene‐bridged porphyrin arrays are almost the same, but the exciton energy hopping (EEH) times for each wheel are markedly different. The dimer and meso‐to‐meso tetramer possess relatively short excitation energy transfer (EET) times (1.28 and 2.48 ps, respectively) due to their good planarity and rigidity. In contrast, the EET time for the trimeric zinc(II)–porphyrin array (6.9 ps) is relatively long due to its nonradiative decay pathway (i.e., cis/trans isomerization of azobenzene). Both di‐ and tetramers exhibit relatively high fluorescence quantum yields, whereas the trimers show weak emission because of structural differences.  相似文献   

16.
The title compound, [Zn4(C7H4O3)4(C10H8N2)4]·10H2O, crystallizes as a centrosymmetric tetranuclear cyclic complex containing four ZnII atoms bridged by four carboxyl­ate groups from salicyl­ate ligands, with a synanti configuration. Each ZnII atom has a distorted trigonal–bipyramidal coordination geometry, formed by two N atoms of a 2,2′‐bipyridine ligand and three O atoms from two salicyl­ate ligands. The complex is stabilized by intramolecular π–π interactions between pairs of bi­pyridine rings and a 16‐membered gear‐wheel‐shaped cyclic framework. The hydrogen‐bonding network is formed via the water mol­ecules.  相似文献   

17.
In the title coordination polymer, [Zn2(C14H8N2O4)2(C12H10N2)]n, the asymmetric unit contains one ZnII cation, two halves of 2,2′‐(diazene‐1,2‐diyl)dibenzoate anions (denoted L2−) and half of a 1,2‐bis(pyridin‐4‐yl)ethene ligand (denoted bpe). The three ligands lie across crystallographic inversion centres. Each ZnII centre is four‐coordinated by three O atoms of bridging carboxylate groups from three L2− ligands and by one N atom from a bpe ligand, forming a tetrahedral coordination geometry. Two ZnII atoms are bridged by two carboxylate groups of L2− ligands, generating a [Zn2(CO2)2] ring. Each loop serves as a fourfold node, which links its four equivalent nodes via the sharing of four L2− ligands to form a two‐dimensional [Zn2L4]n net. These nets are separated by bpe ligands acting as spacers, producing a three‐dimensional framework with a 4664 topology. Powder X‐ray diffraction and solid‐state photoluminescence were also measured.  相似文献   

18.
Highly enantioselective catalytic asymmetric [2+2] cycloadditions of cyclic α‐alkylidene β‐oxo imides with ynamides are described. The high reactivity of the cyclic α‐alkylidene β‐oxo imide allows the [2+2] cycloadditions of a hindered substrate with unreactive ynamides at low temperature. The X‐ray crystallographic analysis of the product suggests that the enantioselectivity of the [2+2] cycloaddition can be well explained by the chelate model comprising the intramolecular hydrogen bond, wherein the cyclic α‐alkylidene β‐oxo imide coordinates with CuII through the two imide carbonyls. The imide group in the product can be transformed to amide, nitrile, and ester groups; moreover, it is removable.  相似文献   

19.
Doubly and quadruply quinoline‐fused porphyrins were effectively synthesized through a reaction sequence consisting of Suzuki–Miyaura coupling of β‐borylated porphyrins with 2‐iodoaniline and subsequent Pictet–Spengler cyclization. These quinoline‐fused porphyrins display red‐shifted absorption bands and higher electron‐accepting abilities. This synthetic protocol also allowed the synthesis of phenanthroline‐fused porphyrin dimers, which bound either a NiII or ZnII cation. The resultant metal complexes displayed further red shifted absorption spectra and molecular twists to effect an almost perpendicular arrangement of the two porphyrins.  相似文献   

20.
The coordination geometry of the ZnII atom in the title complex, [Zn2(NCS)4(C6H8N6)2], is that of a distorted tetra­hedron, in which the ZnII atom is coordinated by four N atoms from the triazole rings of two symmetry‐related 1,2‐bis­(1,2,4‐triazol‐1‐yl)ethane ligands and two thio­cyanate ligands. Two ZnII atoms are bridged by two organic ligands to form a dimer. The dimer lies about an inversion center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号