首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A new distyryl boron dipyrromethene (BODIPY) with two bis(1,2,3‐triazole)amino substituents has been prepared by typical Knoevenagel condensation followed by click reaction. The compound selectively binds to Cu2+ and Hg2+ ions in CH3CN/H2O (1:1 v/v) to give remarkably blueshifted electronic absorption and fluorescence bands as a result of inhibition of the intramolecular charge‐transfer process upon binding to these metal ions. The color changes can be easily seen by the naked eye. The binding stoichiometry between this probe and Cu2+ ions has been determined to be 1:2 by a Job plot of the fluorescence data with a binding constant of ((6.2±0.6)×109) M ?2. The corresponding value for Hg2+ ions is about sixfold smaller.  相似文献   

2.
《中国化学快报》2021,32(8):2572-2576
In this paper, the host-guest interaction of cucurbit[7]uril (Q[7]) and chromone (CMO) has been developed as a fluorescent probe for the highly selective detection of Zn2+ and Cd2+ in water based on a chelation-enhanced fluorescence (CHEF) mechanism. There was a good linear relationship between the fluorescence intensity of the CMO@Q[7] probe and the concentration of Zn2+ or Cd2+ in the range of 0–3.0 × 10–5 mol/L and the detection limit for Zn2+ and Cd2+ was found to be 2.03 × 10–6 mol/L and 1.89 × 10–6 mol/L, respectively. The X-ray crystal structure indicated that different coordination fashions were triggered by Zn2+ and Cd2+ in the CMO@Q[7] complexes, respectively. However, both metal ions coordinated with the carbonyl oxygen of CMO, which was encapsulated in the cavity of Q[7], thus leading to the enhancement of recognition fluorescence emission of CMO.  相似文献   

3.
A rhodamine-conjugated coumarin (L) was used in designing a selective fluorescence chemosensor for the determination of trace amounts of Cr3+ ions in acetonitrile–water (MeCN/H2O (90:10, %v/v) solutions. The intensity of the fluoresce emission of the chemosensor is intensified upon addition of Cr3+ ions in MeCN/H2O (90:10, %v/v) solutions, due to the formation of a selective 1:1 complex between L and Cr3+ ions. The fluorescence enhancement versus Cr3+ concentration has been found to be linear from 1.0?×?10?7 to 1.8?×?10?5 M and a detection limit of 7.5?×?10?8 M. The proposed fluorescent probe proved to be highly selective towards Cr3+ ions as compared to other common metal ions and could be successfully applied to the determination of Cr3+ concentrations in some water and wastewater samples.  相似文献   

4.
A novel ion selective carbon paste electrode for Cd2+ ions based on 2,2′-thio-bis[4-methyl(2-amino phenoxy) phenyl ether] (TBMAPPE) as an ionophore was prepared. The carbon paste was made based on a new nano-composite including multi-walled carbon nanotubes (MWCNTs), nanosilica and room-temperature ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). The constructed nano-composite electrode showed better sensitivity, selectivity, response time, response stability and lifetime in comparison with typical Cd2+ carbon paste sensor for the successful determination of Cd2+ ions in water and in waste water samples. The best performance for nano-composite sensor was obtained with an electrode composition of 18% TBMAPPE, 20% BMIM-PF6, 48% graphite powder, 10% MWCNT and 4% nanosilica. The new electrode exhibited a Nernstian response (29.95?±?0.10?mV?decade?1) toward Cd2+ ions in the range of 3.0?×?10?8 to 1.0?×?10?1?mol?L?1 with a detection limit of 7.5?×?10?9?mol?L?1. The potentiometric response of prepared sensor was independent of the pH of test solution in the pH range 3.0 to 5.5. It had a quick response with a response time of about 6?s. The proposed electrode showed fairly good selectivity over some alkali, alkaline earth, transition and heavy metal ions.  相似文献   

5.
A novel copper selective sensor 2 based on hydrazide and salicylaldehyde has been designed and prepared. Sensor 2 behaves a single selectivity and sensitivity in the recognition for Cu2+ over other metal ions such as Fe3+, Hg2+, Ag+, Ca2+, Zn2+, Pb2+, Cd2+, Ni2+, Co2+, Cr3+ and Mg2+ in DMSO. The distinct color change and the rapid changement of fluorescence emission provide naked‐eyes detection for Cu2+. The UV‐vis data indicate that 1:2 stoichiometry complex is formed by sensor 2 and Cu2+. The association constant Ks was 3.51×104 mol?1·L. The detection limitation of Cu2+ with the sensor 2 was 2.2×10?7 mol·L?1. The sensing of Cu2+ by this sensor was found to be reversible, with the Cu2+‐induced color being lost upon addition of EDTA.  相似文献   

6.
A simple Schiff base CTS, synthesized between 2-hydroxy-1-naphthaldehyde and 2-benzylthio-ethanamine, was found to be a good turn-on fluorescence probe for the detection of Zn2+, due to the restriction of the rotation of the bond between CN and naphthalene ring and/or the blocking of the photo-induced electron transfer (PET) mechanism of the nitrogen atom to naphthalene ring. Excellent selectivity for Zn2+ was evidenced, over many other competing ions, including Fe3+, Cr3+, Ni2+, Co2+, Fe2+,Mn2+, Ca2+, Hg2+, Pb2+, Cu2+, Mg2+, Ba2+, Cd2+, Ag+, Li+, K+, and Na+, in EtOH/HEPES buffer (95:5, v/v, pH = 7.4). It was noteworthy that Cd2+ had no interference with Zn2+. The stoichiometric complex of CTS-Zn2+ was determined to be 2:1 for CTS and Zn2+ in molar, based on the Job plot and single crystal X-ray diffraction data. The binding constant of the complex was 85.7 M?2 with a detection limit of 5.03 × 10?7 M. The fluorescence bio-imaging capability of CTS to detect Zn2+ in live cells was also studied. These results indicated that CTS could serve as a favorable probe for Zn2+.  相似文献   

7.
In this study, simple on–off fluorescent/UV–visible (UV–Vis) probes were easily prepared using 2-(2-hydroxyphenyl)thiazolidine-4-carboxylic acid ( Sen-1 ) and/or 2-(2-hydroxy-5-nitrophenyl)thiazolidine-4-carboxylic acid ( Sen-2 ) for fast detection of Zn2+ ions. Their sensing properties towards common metal ions were investigated using UV–Vis and fluorescence spectroscopies. Sen-1 and Sen-2 displayed a significant change with the addition of Zn2+ ions in the UV–Vis spectra. The addition of Zn2+ ions induced a 104 nm bathochromic shift for Sen-1 . The binding ratio towards Zn2+ metal ions was determined to be 1:1 by using Job plot analysis and fluorescence spectroscopy. The association constant and free energy (ΔG) of Sen-1 and Sen-2 towards Zn2+ ions were calculated by the Benesi–Hildebrand equation. The limit of detection of Sen-1 towards Zn2+ ions is 3.73 × 10−8 M, which is about 1/100 of the value recommended by the World Health Organization for drinking water. Sen-1 was successfully applied to detect Zn2+ ions in water samples and the fluorescence test strip was prepared for visual detection of Zn2+ ions. Finally, the quantum chemical parameters of Sen-1 and Sen-2 , such as highest occupied molecular orbital, lowest unoccupied molecular orbital, and chemical hardness, were investigated by the Becke, three-parameter, Lee–Yang–Parr, Hartree–Fock, and M062x methods.  相似文献   

8.
A microcantilever was modified with a self-assembled monolayer (SAM) of L-cysteine for the sensitively and selectively response to Cu(II) ions in aqueous solution. The microcantilever undergoes bending due to sorption of Cu(II) ions. The interaction of Cu(II) ions with the L-cysteine on the cantilever is diffusion controlled and does not follow a simple Langmuir adsorption model. A concentration of 10?10 M Cu(II) was detected in a fluid cell using this technology. Other cations, such as Ni2+, Zn2+, Pb2+, Cd2+, Ca2+, K+, and Na+, did not respond with a significant deflection, indicating that this L-cysteine-modified cantilever responded selectively and sensitively to Cu(II).  相似文献   

9.
Three novel compounds bearing 2,7-dihydroxylnaphthalene capable of detecting Cu2+ or Fe3+ have been synthesised based on photoinduced electron transfer. The ability of these compounds for complex transition metal ions has been studied, and complex stoichiometry for Cu2+ and Fe3+ complex has been determined in the Tris–HCl (0.01 M DMSO/H2O (v/v) 1:1, buffer, pH 7.4) solution system by fluorescence titration experiments. These chemosensors form a 1:1 complex with Cu2+ or Fe3+ and show a fluorescent quenching with a binding constant of (4.46 ± 0.29) × 103 and (8.04 ± 0.26) × 104, respectively.  相似文献   

10.
A new quinoline-based chemosensor 1 has been designed and synthesised. Its metal ion-binding properties have been documented in organic and aqueous organic solvents. While chemosensor 1 recognises Hg2+ ions (K a = 2.15 × 104 M? 1) by exhibiting ratiometric change in emission in CHCl3/CH3OH (1:1, v/v), under similar condition both Zn2+ and Cd2+ ions are sensed by significant non-ratiometric increase in emission with measurable red shift. In DMSO/H2O (5:95, v/v), the sensor 1 exhibits a greater selectivity towards Hg2+ ions (K a = 9.20 × 103 M? 1) over the other metal ions examined.  相似文献   

11.
A new thiacalix[4]arene derivative in a 1,3-alternate conformation bearing four naphthalene groups through crown-3 chains has been synthesized, which exhibits high selectivity toward Hg2+ by forming a 1:2 complex, among other metal ions ( Na+, K+, Mg2+, Ba2+, Ca2+, Sr2+, Cs+, Mn2+, Fe2+, Cd2+, Co2+, Ni2+, Cu2+, Li+, and Zn2+) with a low detection limit (3.30×10?7 M). The metal ion-binding properties were studied by fluorescence, AFM, and 1H NMR spectroscopy. The in situ prepared [Hg2++L] complex shows well recognition ability for cysteine with a low detection limit (2.23×10?7 M) through fluorescence turning on. The mechanism of fluorescence turning on is the host L releasing from [L+Hg2+] for [Cys+Hg2+] complex formed. Thus the paper reports secondary-sensor design: Hg2+ as a first sensor for [L+Hg2+] form, cysteine as a second sensor for Hg2+ releasing from the [L+Hg2+] complex after cysteine adding in.  相似文献   

12.
Two low cytotoxic fluorescence probes Rb1 and Rb2 detecting Fe3+ were synthesized and evaluated. Rb1 and Rb2 exhibited an excellent selectivity to Fe3+, which was not disturbed by Ag+, Li+, K+, Na+, NH4+, Fe2+, Pb2+, Ba2+, Cd2+, Ni2+, Co2+, Mn2+, Zn2+, Mg2+, Hg2+, Ca2+, Cu2+, Ce3+, AcO?, Br?, Cl?, HPO42?, HSO3?, I?, NO3?, S2O32?, SO32? and SO42? ions. The detection limits were 1.87 × 10?7 M for Rb1 and 5.60 × 10?7 M for Rb2, respectively. 1:1 stoichiometry and 1:2 stoichiometry were the most likely recognition mode of Rb1 or Rb2 towards Fe3+, and the corresponding OFF–ON fluorescence mechanisms of Rb1 and Rb2 were proposed.  相似文献   

13.
A novel pyrene-based receptor bearing benzothiazole was synthesized as a good turn-on fluorescent sensor for the recognition of Zn2+. The probe showed an excellent selectivity for Zn2+over most other competing ions (eg, Cr3+, Li+, Cd2+, Al3+, Pb2+, Li+, Mg2+, Ag+, Ca2+, Ni2+, Mn2+, Fe3+, Hg2+, Ba2+, K+, Na+, Cu2+, Fe2+) in EtOH-HEPES (65:35, v/v, pH?=?7.20), which might be attributed to the photoinduced electron transfer (PET) mechanism. The formation of 1:1 stoichiometric PBZ-Zn2+ complex was determined based on the Job's plot, 1H NMR titration and ESI-MS. The binding constant of the complex was 4.04?×?104?M?1 with a detection limit of 2.58?×?10?7?M. The potential application of the PBZ in real water samples for recognizing Zn2+ was investigated. Bio-imaging study also revealed that PBZ could be applied to detecting Zn2+ in live cells. These results indicated that PBZ could be a favorable probe for Zn2+.  相似文献   

14.
As an effort to design selective fluorescent sensors toward Ca2+, Zn2+ and Cd2+, synthetic and fluorometric studies were performed on four bichromophores, each of which consists of two naphthyl or methynaphthyl units (1- and 2-isomers) linked with a diethylenetriaminepentaacetate (DTPA) chain. Every bichromophore exhibits naphthalene-monomer emission at 370 nm and excimer emission at 405 nm. Emission intensities show sensitive pH dependence, from which protonation constants were determined. Fluorometric titrations with the metal ions were performed at the physiological pH and the conditional formation constants were determined. Naphthyl rings define the stoichiometry and stability of the complexes. The insertion of CH2 spacer intensifies the emission and enhances the selective response to metal ions: the excimer emission is strengthened by 70?100 % with Cd2+ coordination, weakened by 60 % with Zn2+, and insensitive to Ca2+. The high response of methylnaphthyl bichromophores to Cd2+ is advantageous in fluorometric analyses.  相似文献   

15.
A thermodynamic study of the complexation of Cu2+, Pb2+, Zn2+ and Cd2+ ions with 1 and 2 in acetonitrile has been carried out. The study was conducted in the temperature range 283–308 K using a conductometric technique. The observed molar conductivity, Λ, was found to decrease significantly for mole ratios [L]t/[M]t less than unity in all cases. A model involving 1:1 stoichiometry has been used to analyze the conductivity data. The stability constant, K, for each 1:1 complex was determined from the conductivity data by using a nonlinear least-squares curve fitting procedure. The results show that compound 1 has no peak selectivity for any of the metal cations, while compound 2 selectively associates with Cu2+ and Pb2+. Complexes of 1 have the following stability order Pb2+ > Cu2+ > Zn2+ > Cd2+  and Pb2+ > Cu2+ for the complexes of 2. The ?H° and ?S° values for the complexation process were obtained from the slope and intercept of the Van’t Hoff plots respectively. All ?G° values were negative and were determined from the Gibbs–Helmholtz equation and the significance of these values is discussed.  相似文献   

16.
By applying an indirect strategy, a new copper (Ⅱ) complex of a thiosemicarbazone L has been successfully developed as a colorimetric chemosensor for the sensitive detection of mercury (Ⅱ) ions. In the presence of copper (Ⅱ) ions, the colorless solution of L became yellow; however, upon the addition of traces of mercury (Ⅱ) ions, the yellow color faded to colorless immediately. Other ions, including Fe3+ , Ag+ , Ca2+ , Zn2+ , Pb2+ , Cd2+ , Ni2+ , Co2+ , Cr3+ and Mg2+ had a negligible influence on the probe behavior. The detection limits were 5.0×10 -6 M and 3.0×10 -7 M of Hg2+ using the visual color changes and UV-vis changes respectively. Test strips based on Cu-L were fabricated, which could act as a convenient and efficient Hg2+ test kits.  相似文献   

17.
Abstract

A new inorganic ion exchanger, lead antimonate has been synthesized having an Pb:Sb ratio of 1:5 and cation exchange capacity of 1.46 mequiv./g. It is fairly stable in water and dilute solutions of acids, bases and salts. Ion distribution studies on twenty metal ions have been determined on this gel at pH 1,2,3 and 5. The following mixtures have been separated: Mg2+ - Pb2+, Zn2+ - Pb2+, Zn2+ - Pb2+, Cu2+ - Pb2+, Al3+ - Pb2+, Zn2+ - Cd2+ and Mg2+ - Cd2+. Mg2+ and Al3+ were removed with 0.4 M ammonium nitrate, Cu2+ and Zn2+ with 0.4 M ammonium nitrate + 0.1M nitric acid (1:1), Pb2+ with 0.5M nitric acid and Cd2+ with 0.25M nitric acid. A tentative structure of this material is proposed on the basis of chemical analysis, pH titrations, thermogravimetry and IR spectrophotometry.  相似文献   

18.
A new diarylethene with ethylimidazo[2,1-b]thiazole-6-hydrazide unit was synthesized, and its photochromic and fluorescent behaviors have been systematically investigated by the stimulation of lights and metal ions in methanol. This new diarylethene exhibited high selectivity and sensitivity toward Al3+ and Zn2+. The addition of Al3+ and Zn2+ displayed excellent colorimetric response behaviour with the concomitant color change from colorless to yellow, which could be easily observed by the naked eye. Upon addition of Al3+, the fluorescence intensity was enhanced by 180–fold and the emission peak of 1O–Al3+ blue-shifted by 15?nm accompanied with a color change from colorless to bright blue. In contrast, when stimulated with Zn2+, its fluorescence intensity was enhanced by 35–fold and the emission peak of 1O–Zn2+ red-shifted by 16?nm with an evident color change from black to bright green. The LOD for Al3+ and Zn2+ were determined to be 2.97?×?10?9?mol?L?1 and 5.98?×?10?9?mol?L?1, respectively. Moreover, a logic circuit was constructed with the fluorescence intensity as the output signal responding to the light and chemical species as the inputs.  相似文献   

19.
A rapid method for the extraction and monitoring of nanogram level of Pb2+, Cu2+ and Zn2+ ions using uniform silanized mesopor (SBA-15) functionalized with diethylenetriamine groups and flame atomic absorption spectrometry (FAAS) is presented. The preconcentration factor of the method is 100 and detection limit of the technique is 5.5?ng?mL?1 and 1.4?ng?mL?1 and 0.1?ng?mL?1 for Pb2+, Cu2+ and Zn2+ respectively. The time and the optimum amount of the sorbent, pH and minimum amount of acid for stripping of ions from functionalized SBA-15 were tested. The maximum capacity the functionalized SBA-15 was found to be 183.0 (±1.9) µg, 156.0 (±1.5) µg and 80.0 (±1.6) µg of Pb2+, Cu2+ and Zn2+/mg functionalized SBA-15, respectively.  相似文献   

20.
An efficient quinoline-based fluorescent chemosensor (QLNPY) was successfully developed for the detection of zinc ions (Zn2+). This novel chemosensor displayed higher sensitivity and selectivity toward Zn2+ over other competitive metal ions accompanying with obvious fluorescence enhancement. The QLNPY-Zn2+ complex can be further used as a new fluorescent “turn-off” sensor for pyrophosphate (PPi) and sulfur ion (S2?) via a Zn2+ displacement approach. The limits of detection were calculated to be 3.8 × 10?8 M for Zn2+, 3.7 × 10?7 M for PPi and 4.9 × 10?7 M for S2?. The binding mechanism of QLNPY and Zn2+ was investigated through NMR, HR-MS analysis and further studied by crystallographic analysis. Additionally, further application of QLNPY for sequential bioimaging of Zn2+ and PPi was studied in HepG2 cells, suggesting that the quinoline-based chemosensor possesses great potential applications for the detection of intracellular Zn2+ and PPi in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号