首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
RNA nanotechnology uses RNA structural motifs to build nanosized architectures that assemble through selective base‐pair interactions. Herein, we report the crystal‐structure‐guided design of highly stable RNA nanotriangles that self‐assemble cooperatively from short oligonucleotides. The crystal structure of an 81 nucleotide nanotriangle determined at 2.6 Å resolution reveals the so‐far smallest circularly closed nanoobject made entirely of double‐stranded RNA. The assembly of the nanotriangle architecture involved RNA corner motifs that were derived from ligand‐responsive RNA switches, which offer the opportunity to control self‐assembly and dissociation.  相似文献   

2.
3.
The reaction of 2‐cyano‐2‐methyl propanal with 2′‐O‐aminooxymethylribonucleosides leads to stable and yet reversible 2′‐O‐(2‐cyano‐2,2‐dimethylethanimine‐N‐oxymethyl)ribonucleosides. Following N‐protection of the nucleobases, 5′‐dimethoxytritylation and 3′‐phosphitylation, the resulting 2′‐protected ribonucleoside phosphoramidite monomers are employed in the solid‐phase synthesis of three chimeric RNA sequences, each differing in their ratios of purine/pyrimidine. When the activation of phosphoramidite monomers is performed in the presence of 5‐benzylthio‐1H‐tetrazole, coupling efficiencies averaging 99 % are obtained within 180 s. Upon completion of the RNA‐chain assemblies, removal of the nucleobase and phosphate protecting groups and release of the sequences from the solid support are carried out under standard basic conditions, whereas the cleavage of 2′‐O‐(2‐cyano‐2,2‐dimethylethanimine‐N‐oxymethyl) protective groups is effected (without releasing RNA alkylating side‐products) by treatment with tetra‐n‐butylammonium fluoride (0.5 m) in dry DMSO over a period of 24–48 h at 55 °C. Characterization of the fully deprotected RNA sequences by polyacrylamide gel electrophoresis (PAGE), enzymatic hydrolysis, and matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry confirmed the identity and quality of these sequences. Thus, the use of 2′‐O‐aminooxymethylribonucleosides in the design of new 2′‐hydroxyl protecting groups is a powerful approach to the development of a straightforward, efficient, and cost‐effective method for the chemical synthesis of high‐quality RNA sequences in the framework of RNA interference applications.  相似文献   

4.
G‐quadruplex (G4) structures are of general importance in chemistry and biology, such as in biosensing, gene regulation, and cancers. Although a large repertoire of G4‐binding tools has been developed, no aptamer has been developed to interact with G4. Moreover, the G4 selectivity of current toolkits is very limited. Herein, we report the first l ‐RNA aptamer that targets a d ‐RNA G‐quadruplex (rG4). Using TERRA rG4 as an example, our results reveal that this l ‐RNA aptamer, Ap3‐7, folds into a unique secondary structure, exhibits high G4 selectivity and effectively interferes with TERRA‐rG4–RHAU53 binding. Our approach and findings open a new door in further developing G4‐specific tools for diverse applications.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
The incorporation of non‐proteinogenic amino acids represents a major challenge for the creation of functionalized proteins. The ribosomal pathway is limited to the 20–22 proteinogenic amino acids while nonribosomal peptide synthetases (NRPSs) are able to select from hundreds of different monomers. Introduced herein is a fusion‐protein‐based design for synthetic tRNA‐aminoacylation catalysts based on combining NRPS adenylation domains and a small eukaryotic tRNA‐binding domain (Arc1p‐C). Using rational design, guided by structural insights and molecular modeling, the adenylation domain PheA was fused with Arc1p‐C using flexible linkers and achieved tRNA‐aminoacylation with both proteinogenic and non‐proteinogenic amino acids. The resulting aminoacyl‐tRNAs were functionally validated and the catalysts showed broad substrate specificity towards the acceptor tRNA. Our strategy shows how functional tRNA‐aminoacylation catalysts can be created for bridging the ribosomal and nonribosomal worlds. This opens up new avenues for the aminoacylation of tRNAs with functional non‐proteinogenic amino acids.  相似文献   

15.
16.
RNA‐based therapies offer a wide range of therapeutic interventions including the treatment of skin diseases; however, the strategies to efficiently deliver these biomolecules are still limited due to obstacles related to the cellular uptake and cytoplasmic delivery. Herein, we report the synthesis of a triggerable polymeric nanoparticle (NP) library composed of 160 formulations, presenting physico‐chemical diversity and differential responsiveness to light. Six formulations were more efficient (up to 500 %) than commercially available lipofectamine in gene‐knockdown activity. These formulations showed differential internalization by skin cells and the endosomal escape was rapid (minutes range). The NPs were effective in the release of siRNA and miRNA. Acute skin wounds treated with the top hit NP complexed with miRNA‐150‐5p healed faster than wounds treated with scrambled miRNA. Light‐activatable NPs offer a new strategy to topically deliver non‐coding RNAs.  相似文献   

17.
18.
19.
20.
The twenty first amino acid, selenocysteine (Sec), is the only amino acid that is synthesized on its cognate transfer RNA (tRNASec) in all domains of life. The multistep pathway involves O‐phosphoseryl‐tRNA:selenocysteinyl‐tRNA synthase (SepSecS), an enzyme that catalyzes the terminal chemical reaction during which the phosphoseryl–tRNASec intermediate is converted into selenocysteinyl‐tRNASec. The SepSecS architecture and the mode of tRNASec recognition have been recently determined at atomic resolution. The crystal structure provided valuable insights that gave rise to mechanistic proposals that could not be validated because of the lack of appropriate molecular probes. To further improve our understanding of the mechanism of the biosynthesis of selenocysteine in general and the mechanism of SepSecS in particular, stable tRNASec substrates carrying aminoacyl moieties that mimic particular reaction intermediates are needed. Here, we report on the accurate synthesis of methylated, phosphorylated, and phosphonated serinyl‐derived tRNASec mimics that contain a hydrolysis‐resistant ribose 3′‐amide linkage instead of the natural ester bond. The procedures introduced allow for efficient site‐specific methylation and/or phosphorylation directly on the solid support utilized in the automated RNA synthesis. For the preparation of (S)‐2‐amino‐4‐phosphonobutyric acid–oligoribonucleotide conjugates, a separate solid support was generated. Furthermore, we developed a three‐strand enzymatic ligation protocol to obtain the corresponding full‐length tRNASec derivatives. Finally, we developed an electrophoretic mobility shift assay (EMSA) for rapid, qualitative characterization of the SepSecS‐tRNA interactions. The novel tRNASec mimics are promising candidates for further elucidation of the biosynthesis of selenocysteine by X‐ray crystallography and other biochemical approaches, and could be attractive for similar studies on other tRNA‐dependent enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号